OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4057–4065

Multi-normal mode-splitting for an optical cavity with electromagnetically induced transparency medium

Xudong Yu and Jing Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4057-4065 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically study the cavity transmission spectra with three-level atoms coupled by a coherent external control field in the superstrong coupling regime (atoms-cavity coupling strength gN is near or larger than the cavity free-spectral range ∆ FSR ). When satisfying the superstrong coupling condition by increasing the number of the interaction atoms, more than one FSR cavity modes interact with atoms and each mode will split three peaks, which can be well explained by the linear dispersion enhancement of electromagnetically induced transparency medium due to the largely increased atomic density in the cavity.

© 2010 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.5580) Atomic and molecular physics : Quantum electrodynamics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: January 4, 2010
Revised Manuscript: February 4, 2010
Manuscript Accepted: February 5, 2010
Published: February 16, 2010

Xudong Yu and Jing Zhang, "Multi-normal mode-splitting for an optical cavity with electromagnetically induced transparency medium," Opt. Express 18, 4057-4065 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. R. Berman, "Cavity Quantum Electrodynamics," Advances in Atomic, Molecular, and Optical Physics, (Academic, New York) 1994.
  2. A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, "Observation of the vacuum Rabi spectrum for one trapped atom," Phys. Rev. Lett. 93, 233603 (2004). [CrossRef] [PubMed]
  3. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, "Normal-mode spectroscopy of a single-bound-atom-cavity system," Phys. Rev. Lett. 94, 033002 (2005). [CrossRef] [PubMed]
  4. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P.W. H. Pinkse, and G. Rempe, "Trapping and observing single atoms in a blue-detuned intracavity dipole trap," Phys. Rev. Lett. 99, 013002 (2007). [CrossRef] [PubMed]
  5. M. Tavis, and F. W. Cummings, "Exact solution for an N-molecule-radiation-field Hamiltonian," Phys. Rev. 170, 379 (1968). [CrossRef]
  6. G. S. Agarwal, "Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity," Phys. Rev. Lett. 53, 1732 (1984). [CrossRef]
  7. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, "Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations," Phys. Rev. Lett. 64, 2499 (1990). [CrossRef] [PubMed]
  8. R. J. Thompson, G. Rempe, and H. J. Kimble, "Observation of normal-mode splitting for an atom in an optical cavity," Phys. Rev. Lett. 68, 1132 (1992). [CrossRef] [PubMed]
  9. J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, "Normal mode splitting and mechanical effects of an optical lattice in a ring cavity," Phys. Rev. Lett. 96, 023002 (2006). [CrossRef] [PubMed]
  10. A. K. Tuchman, R. Long, G. Vrijsen, J. Boudet, J. Lee, and M. A. Kasevich, "Normal-mode splitting with large collective cooperativity," Phys. Rev. A 74, 053821 (2006). [CrossRef]
  11. S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, "Cavity nonlinear optics at low photon numbers from collective atomic motion," Phys. Rev. Lett. 99, 213601 (2007). [CrossRef]
  12. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, "Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip," Nature 450, 272 (2007). [CrossRef] [PubMed]
  13. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, "Cavity QED with a Bose-Einstein condensate," Nature 450, 268 (2007). [CrossRef] [PubMed]
  14. J. Gea-Banacloche, H. Wu, and M. Xiao, "Transmission spectrum of Doppler-broadened two-level atoms in a cavity in the strong-coupling regime," Phys. Rev. A 78, 023828 (2008). [CrossRef]
  15. G. Hernandez, J. Zhang, and Y. Zhu, "Vacuum Rabi splitting and intracavity dark state in a cavity-atom system," Phys. Rev. A 76, 053814 (2007). [CrossRef]
  16. H. Wu, J. Gea-Banacloche, and M. Xiao, "Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium," Phys. Rev. Lett. 100, 173602 (2008). [CrossRef] [PubMed]
  17. H. Wu, J. Gea-Banacloche, and M. Xiao, "Splitting of atom-cavity polariton peaks for three-level atoms in an optical cavity," Phys. Rev. A 80, 033806 (2009). [CrossRef]
  18. B. Nagorny, Th. Elsasser, and A. Hemmerich, "Collective atomic motion in an optical lattice formed inside a high finesse cavity," Phys. Rev. Lett. 91, 153003 (2003). [CrossRef] [PubMed]
  19. D. Kruse, C. von Cube, C. Zimmermann, and P. W. Courteille, "Observation of lasing mediated by collective atomic recoil," Phys. Rev. Lett. 91, 183601 (2003). [CrossRef] [PubMed]
  20. A. T. Black, H. W. Chan, and V. Vuletic, "Observation of collective friction forces due to spatial self-organization of atoms: From Rayleigh to Bragg scattering," Phys. Rev. Lett. 91, 203001 (2003). [CrossRef] [PubMed]
  21. S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, "Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity," Phys. Rev. Lett. 98, 053603 (2007). [CrossRef] [PubMed]
  22. I. Teper, G. Vrijesen, J. Lee, and M. A. Kasevich, "Backaction noise produced via cavity-aided nondemolition measurement of an atomic clock state," arXiv:quant-ph/0807.4762.
  23. M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, "Squeezing the collective spin of a dilute atomic ensemble by cavity feedback," arXiv:quant-ph/0810.2582.
  24. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, "Cavity optomechanics with a Bose-Einstein condensate," Science 322, 235 (2008). [CrossRef] [PubMed]
  25. G. Gunter, A. A. Anappara, J. Hees, L. Sorba, G. Biasiol, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber "Sub-cycle switch-on of ultrastrong light-matter interaction," Nature 458, 178 (2009). [CrossRef] [PubMed]
  26. D. Meiser and P. Meystre, "Superstrong coupling regime of cavity quantum electrodynamics," Phys. Rev. A 74, 065801 (2006). [CrossRef]
  27. X. Yu, D. Xiong, H. Chen, P. Wang, M. Xiao, and J. Zhang, "Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime," Phys. Rev. A 79, 061803 (2009). [CrossRef]
  28. M. O. Scully and M. S. Zubairy, "Quantum Optics" Cambridge University Press, Cambridge, England, 1997.
  29. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, "Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A 51, 576 (1995). [CrossRef] [PubMed]
  30. R. W. Boyd, "Nonlinear Optics" Academic, San Diego, CA, 2003.
  31. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50(7), 37 (1997). [CrossRef]
  32. J. P. Marangos, "Electromagnetically induced transparency," J. Mod. Opt. 45, 471 (1998). [CrossRef]
  33. M. D. Lukin, " Colloquium: Trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457 (2003). [CrossRef]
  34. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  35. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, "Cavity-linewidth narrowing by means of electromagnetically induced transparency," Opt. Lett. 25, 1732 (2000). [CrossRef]
  36. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, "Electromagnetically induced transparency controlled by a microwave field," Phys. Rev. A 80, 023820 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited