OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4066–4073

Negative photoconductivity induced by surface plasmon polaritons in Ag nanowire macrobundles

Jia-Lin Sun, Wei Zhang, Jia-Lin Zhu, and Yang Bao  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4066-4073 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study experimentally and theoretically the transport properties of Ag nanowire macrobundles in the presence of light irradiation. We have observed significant negative photoconductivity induced by the interaction between electrons and the excited surface plasmon polaritons (SPPs). As temperature T increases from 77 K to 304 K, the dark resistivity ρd without light irradiation increases linearly with T, and the resistivity change Δρ due to light irradiation decreases nonlinearly with increasing T. The current change |ΔI| due to light irradiation, which is proportional to the laser intensity, also decreases nonlinearly with increasing T. We explain well the experimental results using our proposed model with a new scattering channel due to the interaction between electrons and SPPs. Both our experimental and theoretical results reveal the novel phenomena due to the combination of photonics and electronics properties of Ag nanowires and they will be useful for scientific research, and technical applications.

© 2010 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: January 4, 2010
Revised Manuscript: February 2, 2010
Manuscript Accepted: February 4, 2010
Published: February 16, 2010

Jia-Lin Sun, Wei Zhang, Jia-Lin Zhu, and Yang Bao, "Negative photoconductivity induced by surface plasmon polaritons in Ag nanowire macrobundles," Opt. Express 18, 4066-4073 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006). [CrossRef] [PubMed]
  3. M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008). [CrossRef] [PubMed]
  4. K. Y. Bliokh, Y. P. Bliokh, and A. Ferrando, “Resonant Plasmon-Soliton Interaction,” arXiv: 0806.2183.
  5. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  7. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  8. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008). [CrossRef]
  9. P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006). [CrossRef]
  10. Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93(16), 166108 (2004). [CrossRef] [PubMed]
  11. Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004). [CrossRef] [PubMed]
  12. N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003). [CrossRef] [PubMed]
  13. P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000). [CrossRef]
  14. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001). [CrossRef]
  15. M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b). [CrossRef]
  16. B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001). [CrossRef] [PubMed]
  17. J. Xu, J. L. Sun, and J. L. Zhu, “Thermo- and photoinduced voltages in Ag heterodimensional junctions,” Appl. Phys. Lett. 91(16), 161107 (2007). [CrossRef]
  18. W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range,” Phys. Rev. B 66(7), 075414 (2002). [CrossRef]
  19. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  20. J. Shi and X. C. Xie, “Radiation-induced “zero-resistance state” and the photon-assisted transport,” Phys. Rev. Lett. 91(8), 086801 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited