OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4103–4117

The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems

Peter R.T. Munro, Konstantin Ignatyev, Robert D. Speller, and Alessandro Olivo  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4103-4117 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.

© 2010 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(080.0080) Geometric optics : Geometric optics
(110.7440) Imaging systems : X-ray imaging
(340.7430) X-ray optics : X-ray coded apertures

ToC Category:
Imaging Systems

Original Manuscript: July 13, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: December 16, 2009
Published: February 17, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Peter R. Munro, Konstantin Ignatyev, Robert D. Speller, and Alessandro Olivo, "The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems," Opt. Express 18, 4103-4117 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Lewis, "Medical phase contrast x-ray imaging: current status and future prospects," Phys. Med. Biol. 49(16), 3573-3583 (2004). [CrossRef] [PubMed]
  2. E. Castelli, F. Arfelli, D. Dreossi, R. Longo, T. Rokvic, M. Cova, E. Quaia, M. Tonutti, F. Zanconati, A. Abrami, V. Chenda, R. Menk, E. Quai, G. Tromba, P. Bregant, and F. de Guarrini, "Clinical mammography at the SYRMEP beam line," Nucl. Instrum. Meth. A 572(1), 237-240 (2007). [CrossRef]
  3. A. Olivo and R. Speller, "A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources," Appl. Phys. Lett. 91(7), 074106 (2007). [CrossRef]
  4. A. Olivo and R. Speller, "Phase contrast imaging," International Patent WO/2008/029107, (2008).
  5. A. Olivo, S. E. Bohndiek, J. A. Griffiths, A. Konstantinidis, and R. D. Speller, "A non-free-space propagation x-ray phase contrast imaging method sensitive to phase effects in two directions simultaneously," Appl. Phys. Lett. 94(4) (2009). [CrossRef]
  6. A. Olivo and R. Speller, "Modelling of a novel x-ray phase contrast imaging technique based on coded apertures," Phys. Med. Biol. 52(22), 6555-6573 (2007). [CrossRef] [PubMed]
  7. T. Gureyev and S. Wilkins, "On x-ray phase imaging with a point source," J. Opt. Soc. Am. A 15(3), 579-585 (1998). [CrossRef]
  8. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, "Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources," Nat. Phys. 2(4), 258-261 (2006). [CrossRef]
  9. M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, "High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source," Appl. Phys. Lett. 90(22), 224101 (2007). [CrossRef]
  10. M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, "The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources," J. Microsc. 232, 145-157 (2008). [CrossRef] [PubMed]
  11. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, "Demonstration of X-Ray Talbot Interferometry," Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866-L868 (2003). [CrossRef]
  12. A. Peterzol, A. Olivo, L. Rigon, S. Pani, and D. Dreossi, "The effects of the imaging system on the validity limits of the ray-optical approach to phase contrast imaging," Med. Phys. 32(12), 3617-3627 (2005). [CrossRef]
  13. J. B. Keller, "Geometrical Theory of Diffraction," J. Opt. Soc. Am. A 52(2), 116-130 (1962). [CrossRef]
  14. G. James, Geometrical theory of diffraction for electromagnetic waves (Peter Peregrinus Ltd., 1976).
  15. J. Arsac, Fourier transforms and the theory of distributions (Prentice-Hall, 1966).
  16. A. Olivo and R. Speller, "Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of any x-ray imaging system," Phys. Med. Biol. 51(12), 3015-3030 (2006). [CrossRef] [PubMed]
  17. A. Erdélyi, ed., Tables of integral transforms: based, in part, on notes left by Harry Bateman and compiled by the staff of the Bateman Manuscript Project, vol. I (New York; London: McGraw-Hill, 1954).
  18. F. Arfelli, M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. Dalla Palma, M. Di Michiel, R. Longo, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati, "Low-dose phase contrast x-ray medical imaging," Phys. Med. Biol. 43(10), 2845-2852 (1998). [CrossRef] [PubMed]
  19. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic Press, Boston, 1985).
  20. A. Olivo and R. Speller, "Image formation principles in coded-aperture based x-ray phase contrast imaging," Phys. Med. Biol. 53(22), 6461-6474 (2008). [CrossRef] [PubMed]
  21. M. Born and E. Wolf, Principles of Optics, seventh ed. (Cambridge University Press, Cambridge, 1999).
  22. J. Murray, Asymptotic analysis (Springer Verlag, 1984). [CrossRef]
  23. R. Buchal and J. Keller, "Boundary layer problems in diffraction theory," Commun. Pur. Appl. Math. 13, 85-114 (1960). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited