OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4138–4147

Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

Il-Sug Chung, Pierluigi Debernardi, Yong Tak Lee, and Jesper Mørk  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4138-4147 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin of the mode selection properties of the new structure is rigorously analyzed and compared to other structures reported in the literature. The possibility of engineering the emission shape while retaining strong single mode operation is highly desirable for low-cost mid-range optical interconnects applications as well as the compact optical trapping of high-refractive-index dielectric particles and low-refractive-index, absorbing, or metallic particles.

© 2010 OSA

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.7010) Lasers and laser optics : Laser trapping
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 14, 2009
Revised Manuscript: February 3, 2010
Manuscript Accepted: February 4, 2010
Published: February 17, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Il-Sug Chung, Pierluigi Debernardi, Yong Tak Lee, and Jesper Mørk, "Transverse-mode-selectable microlens vertical-cavity surface-emitting laser," Opt. Express 18, 4138-4147 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, and E. Kapon, “10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands,” in Optical Fiber Communication Conference (Optical Society of America, 2008), paper OThS2.
  2. S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002). [CrossRef]
  3. D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(12), 1599–1606 (2002). [CrossRef]
  4. Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004). [CrossRef]
  5. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004). [CrossRef]
  6. A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electron. Lett. 42(2), 93 (2006). [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  8. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996). [CrossRef] [PubMed]
  9. A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006). [CrossRef]
  10. K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electron. Lett. 43(2), 107 (2007). [CrossRef]
  11. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004). [CrossRef] [PubMed]
  12. G. P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers,” Phys. Rev. A 63(2), 023816 (2001). [CrossRef]
  13. P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001). [CrossRef]
  14. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).
  15. P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008). [CrossRef]
  16. P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15(3), 828–837 (2009). [CrossRef]
  17. A. W. Snyder, and J. D. Love, Optical waveguide theory, (Chapman & Hall, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited