OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4170–4183

Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses

Daniel Herrmann, Raphael Tautz, Franz Tavella, Ferenc Krausz, and Laszlo Veisz  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4170-4183 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a new and compact ϕ-plane-pumped non-collinear optical parametric chirped-pulse amplification (NOPCPA) scheme for broadband pulse amplification, which is based on two-beam-pumping (TBP) at 532 nm. We employ type-I phase-matching in a 5 mm long BBO crystal with moderate pump intensities to preserve the temporal pulse contrast. Amplification and compression of the signal pulse from 675 nm - 970 nm is demonstrated, which results in the generation of 7.1-fs light pulses containing 0.35 mJ energy. In this context, we investigate the pump-to-signal energy conversion efficiency for TBP-NOPCPA and outline details for few-cycle pulse characterization. Furthermore, it is verified, that the interference at the intersection of the two pump beams does not degrade the signal beam spatial profile. It is theoretically shown that the accumulated OPA phase partially compensates for wave-vector mismatch and leads to extended broadband amplification. The experimental outcome is supported by numerical split-step simulations of the parametric signal gain, including pump depletion and parametric fluorescence.

© 2010 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices
(320.7100) Ultrafast optics : Ultrafast measurements
(190.4975) Nonlinear optics : Parametric processes
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Nonlinear Optics

Original Manuscript: October 27, 2009
Revised Manuscript: December 23, 2009
Manuscript Accepted: January 7, 2010
Published: February 17, 2010

Daniel Herrmann, Raphael Tautz, Franz Tavella, Ferenc Krausz, and Laszlo Veisz, "Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses," Opt. Express 18, 4170-4183 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, "Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids," Chem. Phys. 350, 45-55 (2008). [CrossRef]
  2. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000). [CrossRef]
  3. F. Krausz and M. Ivanov, "Attosecond physics," Rev. Mod. Phys. 81, 163-234 (2009). [CrossRef]
  4. K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevičius, U. Schramm, M. Geissler, J. Meyer-ter-Vehn, D. Habs, and F. Krausz, "Few-Cycle Laser-Driven Electron Acceleration," Phys. Rev. Lett. 102, 124801 (2009). [CrossRef] [PubMed]
  5. G. D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, "Route to intense single attosecond pulses," New J. Phys. 8 (2006) 19. [CrossRef]
  6. A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakolev, A. Scrinzi, T. W. Hänsch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 421, 611-615 (2003). [CrossRef] [PubMed]
  7. R. Hörlein, Y. Nomura, D. Herrmann, M. Stafe, I. B. Földes, S. G. Rykovanov, F. Tavella, A. Marcinkevičius, F. Krausz, L. Veisz, and G. D. Tsakiris, "Few-cycle harmonic emission from solid density plasmas," (in preparation).
  8. A. Dubietis, G. Jonusauskas, and A. Piskarskas, "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal," Opt. Commun. 88, 437-440 (1992). [CrossRef]
  9. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, "Analysis and optimization of optical parametric chirped pulse amplification," J. Opt. Soc. Am. B 19, 2945-2956 (2002). [CrossRef]
  10. A. Dubietis, R. Butkus, and A. Piskarskas, "Trends in chirped pulse optical parametric amplification," IEEE J. Sel. Top. Quantum Electron. 12, 163-172 (2006). [CrossRef]
  11. S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, "A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification," Opt. Express 14, 8168-8177 (2006). [CrossRef] [PubMed]
  12. F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, "Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier," Opt. Lett. 32, 2227-2229 (2007). [CrossRef] [PubMed]
  13. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, "Generation of sub-three cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification," Opt. Lett. 34, 2459-2461 (2009). [CrossRef] [PubMed]
  14. A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas, "Combining effect in a multiple-beam-pumped optical parametric amplifier," J. Opt. Soc. Am. B 15, 1135-1139 (1998). [CrossRef]
  15. A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, "Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams," Opt. Commun. 158, 101-104 (1998). [CrossRef]
  16. D. Brida, G. Cirmi, C. Manzoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerulo, "Sub-two-cycle light pulses at 1.6μm from an optical parametric amplifier", Opt. Lett. 33, 741-743 (2008). [CrossRef] [PubMed]
  17. T. S. Sosnowski, P. B. Stephens, and T. B. Norris, "Production of 30-fs pulses tunable throughout the visible region by a new technique in optical parametric amplification," Opt. Lett. 21, 140-142 (1996). [CrossRef] [PubMed]
  18. E. Žeromskis, A. Dubietis, G. Tamošauskas, A. Piskarskas, "Gain bandwidth broadening of continuum-seeded optical parametric amplifier by use of two pump beams," Opt. Commun. 203, 435-440 (2002). [CrossRef]
  19. G. Tamošauskas, A. Dubietis, G. Valiulis, and A. Piskarskas, "Optical parametric amplifier pumped by two mutually incoherent laser beams," Appl. Phys. B 91, 305307 (2008).
  20. C. Wang, Y. Leng, B. Zhao, Z. Zhang, Z. Xu, "Extremely broad gain spectra of two-beam-pumped optical parametric chirped-pulse amplifier," Opt. Commun. 237, 169-177 (2004). [CrossRef]
  21. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).
  22. G. Cerullo and S. de Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003). [CrossRef]
  23. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York).
  24. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  25. R. A. Baumgartner and R. L. Byer, "Optical Parametric Amplification," IEEE J. Quantum Electron. 15, 432-444 (1979). [CrossRef]
  26. F. Tavella, A. Marcinkevičius, and F. Krausz, "Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system," New J. Phys. 8 (2006) 219. [CrossRef]
  27. A. Dement’ev, O. Vrublevskaja, V. Girdauskas, and R. Kazragyte, "Numerical Analysis of Short Pulse Optical Parametric Amplification Using Type I Phase Matching," Nonl. Anal.: Modelling and Control 9, 39-53 (2004).
  28. A. Kurtinaitis, A. Dementjev, and F. Ivanauskas, "Modeling of Pulse Propagation factor Changes in Type II Second-Harmonic Generation," Nonl. Anal.: Modelling and Control 6, 51-69 (2001).
  29. G. A. Reider, 1997, Photonik (Springer, New York).
  30. L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, "Investigation of spectral bandwidth of optical parametric amplification," Appl. Phys. B 79, 569576 (2004). [CrossRef]
  31. F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, "High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier," Appl. Phys. B 3, 753 (2005). [CrossRef]
  32. G. Arisholm, "General numerical methods for simulating second-order nonlinear interactions in birefringent media," J. Opt. Soc. Am. B 14, 2543-2549 (1997). [CrossRef]
  33. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, "Numerical simulation for performance optimization of a few-cycle terawatt NOPCPA system," Appl. Phys. B 87, 677684 (2007). [CrossRef]
  34. A. Picozzi and M. Haeltermann, "Influence of walk-off, dispersion, and diffraction on the coherence of parametric fluorescence," Phys. Rev. E,  63, 056611 (2001). [CrossRef]
  35. A. Gatti, H. Wiedemann, L. A. Lugitao, and I. Marzoli, "Langevin treatment of quentum fluctuations and optical patterns in optical parametric oscillators below threshold," Phys. Rev. A,  56, 877-897 (1997). [CrossRef]
  36. D. A. Kleinmann, "Theory of Optical Parametric Noise," Phys. Rev.,  174, 1027-1041 (1968). [CrossRef]
  37. F. Salin, P. Georges, G. Roger, and A. Brun, "Single-shot measurement of a 52-fs pulse," Appl. Opt. 26, 4528-4531 (1987). [CrossRef] [PubMed]
  38. A. Brun, P. Georges, G. Le Saux, and F. Salin, "Single-shot characterization of ultrashort light pulses," J. Phys. D: Appl. Phys. 24, 1225-1233 (1991). [CrossRef]
  39. H. Mashiko, A. Suda, and K. Midorikawa, "All-reflective interferometric autocorrelator for the measurement of ultra-short optical pulses," Appl. Phys. B 76, 525-530 (2003).
  40. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, Norwell, USA, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited