OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4260–4274

Light trapping regimes in thin-film silicon solar cells with a photonic pattern

Simone Zanotto, Marco Liscidini, and Lucio Claudio Andreani  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4260-4274 (2010)
http://dx.doi.org/10.1364/OE.18.004260


View Full Text Article

Enhanced HTML    Acrobat PDF (1962 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub-micron scale realized in the silicon layer and filled with silicon dioxide right below a properly designed antireflection (AR) coating. The study and optimization of the structure as a function of all the photonic lattice parameters, together with the calculation of the absorption in a single layer, allows to identify the different roles of the periodic pattern in determining an increase of the absorbance. From one side, the photonic crystal and the AR coating act as impedance matching layers, thus minimizing reflection of incident light over a particularly wide range of frequencies. Moreover a strong absorption enhancement is observed when the incident light is coupled into the quasi guided modes of the photonic slab. We found a substantial increase of the short-circuit current when the parameters are properly optimized, demonstrating the advantage of a wavelength-scale, photonic crystal based approach for patterning of thin-film silicon solar cells.

© 2010 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Solar Energy

History
Original Manuscript: December 7, 2009
Revised Manuscript: January 22, 2010
Manuscript Accepted: January 24, 2010
Published: February 17, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Citation
Simone Zanotto, Marco Liscidini, and Lucio Claudio Andreani, "Light trapping regimes in thin-film silicon solar cells with a photonic pattern," Opt. Express 18, 4260-4274 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4260


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, London 2003).
  2. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando 1985).
  3. J. Poortmans and V. Arkhipov (editors), Thin Film Solar Cells (Wiley, Chichester 2006). [CrossRef]
  4. P. Würfel, Physics of Solar Cells (Wiley-ICH, Weinheim 2005). [CrossRef]
  5. C. Heine and R. Morf, "Submicrometer gratings for solar energy applications," Appl. Opt. 34, 2476 (1995). [CrossRef] [PubMed]
  6. M. Auslender, D. Levy, and S. Hava, "One-dimensional antireflection gratings in (100) silicon: a numerical study," Appl. Opt. 37, 369 (1998). [CrossRef]
  7. C. Eisele, C. E. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722 (2001). [CrossRef]
  8. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, "Silicon thin-film solar cells with rectangular shaped grating couplers," Progress in Photovoltaics: Research and Applications,  14, 13-24 (2005). [CrossRef]
  9. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006). [CrossRef]
  10. K. R. Catchpole and M. A. Green, "A conceptual model of light coupling by pillar diffraction gratings," J. Appl. Phys. 101, 063105 (2007). [CrossRef]
  11. K. R. Catchpole, "A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells," J. Appl. Phys. 102, 013102 (2007). [CrossRef]
  12. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cells efficiencies with photonic crystals," Opt. Express 15, 16986 (2007). [CrossRef] [PubMed]
  13. C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M Lemiti, X. Letartre, and P. Viktorovitch, "Photonic crystal assisted ultra-thin silicon photovoltaic solar cell," in Photonics for Solar Energy Systems II, A. Gombert, ed., Proc. SPIE, 7002, 700207 (2008). [CrossRef]
  14. Y. Lee, C. Huang, J. Chang, and M. Wu, "Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor grating," Opt. Express 16, 7969 (2008). [CrossRef] [PubMed]
  15. D. Zhou and R. Biswas, "Photonic crystal enhanced light-trapping in thin film solar cells," J. Appl. Phys. 103, 093102 (2008). [CrossRef]
  16. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, "Employing dielectric diffractive structures in solar cells-a numerical study," Phys. Stat. Sol. A 205, 2777 (2008). [CrossRef]
  17. A. Chutinan and S. John, "Light trapping and absorption optimization in certain thin-film photonic crystal architectures", Phys. Rev. A 78, 023825 (2008). [CrossRef]
  18. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martinez, and I. Rey-Stolle, "Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface," Appl. Phys. Lett. 94, 191102 (2009). [CrossRef]
  19. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, "Absorption enhancement using photonic crystals for silicon thin film solar cells," Opt. Express 17, 14312 (2009). [CrossRef] [PubMed]
  20. A. Chutinan, N. P. Kherani, and S. Zukotynski, "High-efficiency photonic crystal solar cell architecture," Opt. Express 17, 8871 (2009). [CrossRef] [PubMed]
  21. R. Dewan, and D. Knipp, "Light trapping in thin-film silicon solar cells with integrated diffraction grating," J. Appl. Phys. 106, 074901 (2009). [CrossRef]
  22. C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells," J. App. Phys. 51, 4494-4500 (1980). [CrossRef]
  23. For this reason, we refer indifferently to microcrystalline or crystalline silicon, because they have the same optical properties.
  24. ASTMG 173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface, free download from http://rredc.nrel.gov/solar/spectra/am1.5.
  25. D. M. Whittaker, and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610 (1999). [CrossRef]
  26. E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine, "Transparent Conductive Oxides for Photovoltaics," MRS Bulletin 32, 242-247 (2007). [CrossRef]
  27. Y. Yang, X.W. Sun, B.J. Chen, C.X. Xu, T.P. Chen, C.Q. Sun, B.K. Tay, and Z. Sun, "Refractive indices of textured indium tin oxide and zinc oxide thin films," Thin Solid Films 510, 95-101 (2006). [CrossRef]
  28. M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, "The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method," J. Mater. Sci: Mater. Electron. 19, 704-708 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited