OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4300–4309

Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy

Seok-min Kim, Wei Zhang, and Brian T. Cunningham  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4300-4309 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coupling a tightly packed layer of discrete metal nanoparticles to the resonant mode of a photonic crystal surface has been demonstrated as a means for obtaining additional electromagnetic gain for surface-enhanced Raman spectroscopy (SERS), in which electric fields of the photonic crystal can couple to plasmon resonances of the metal nanoparticles. Because metal nanoparticles introduce absorption that quench the photonic crystal resonance, a balance must be achieved between locating the metal nanoparticles too close to the surface while still positioning them within the enhanced evanescent field to maximize coupling to surface plasmons. In this work, we describe a parametric study into the design of a photonic crystal-SERS substrate, comprised of a replica molded photonic crystal slab as the dielectric optical resonator, a SiO2 “post” layer spacer, and an Ag “cap” metal nanostructure. Using the Raman signal for trans-1,2-bis(4pyridyl)ethane, the coupling efficiency was maximized for a SiO2 “post” layer thickness of 50 nm and a Ag “cap” height of ~20 nm, providing an additional enhancement factor of 21.4.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.4555) Optical devices : Coupled resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.5298) Diffraction and gratings : Photonic crystals
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Photonic Crystals

Original Manuscript: January 8, 2010
Revised Manuscript: February 4, 2010
Manuscript Accepted: February 11, 2010
Published: February 17, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Seok-min Kim, Wei Zhang, and Brian T. Cunningham, "Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy," Opt. Express 18, 4300-4309 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Reyes-Goddard MSc, H Barr, and N Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005). [CrossRef]
  2. I. Pochrandc, Springer Tracts in Modern Physics (Springer-Verlag, 1984).
  3. D. A. Weitz, M. Moskovits, and J. A. Creighton, “Surface-enhanced Raman spectroscopy with emphasis on liquid-solid interfaces,” in Chemical Structure at Interfaces:New Laser and Optical Techniques, R. B. Hall and A.B. Ellis, eds. (VCH, 1986), pp. 197–243.
  4. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006). [CrossRef] [PubMed]
  5. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009). [CrossRef] [PubMed]
  6. C. Lin, L. Jiang, Y. Chai, H. Xiao, S. Chen, and H. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express 17(24), 21581–21589 (2009). [CrossRef] [PubMed]
  7. K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009). [CrossRef]
  8. I. M. White, J. Gohring, and X. Fan, “SERS-based detection in an optofluidic ring resonator platform,” Opt. Express 15(25), 17433–17442 (2007). [CrossRef] [PubMed]
  9. S. Kim, W. Zhang, and B. T. Cunningham, “Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 93(14), 143112 (2008). [CrossRef]
  10. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens, Actuator B-Chem. 131(1), 279–284 (2008). [CrossRef]
  11. W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008). [CrossRef] [PubMed]
  12. W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008). [CrossRef]
  13. S. M. Kim, H. Kim, and S. Kang, “Development of an ultraviolet imprinting process for integrating a microlens array onto an image sensor,” Opt. Lett. 31(18), 2710–2712 (2006). [CrossRef] [PubMed]
  14. C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005). [CrossRef]
  15. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005). [CrossRef]
  16. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006). [CrossRef] [PubMed]
  17. http://www.d3diagnostics.com/en/klarite-substrates –10452

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited