OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4316–4328

Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle

Yingjie Zhang, Ruoyang Zhang, Qingru Wang, Zhishuai Zhang, Haibo Zhu, Jiadong Liu, Feng Song, Shanxin Lin, and Edwin Yue Bun Pun  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4316-4328 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical study of the influence of a single spherical metal nanoparticle (MNP) on the fluorescence intensity of nearby emitters with two-level and multi-level energy systems. The enhancement factors of the excitation and relaxation processes are deduced. To reveal the interrelationship between the excitation and relaxation processes we adopt the rate equations of two-level fluorescent systems and upconversion fluorescent systems, and deduce the expression for the fluorescence enhancement factor. Our calculated results for the two-level systems agree well with reported experimental data. As to the upconversion fluorescent systems, our numerical results provide the first theoretical prediction showing that the MNP may selectively enhance a certain fluorescence process among various ones.

© 2010 OSA

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: December 16, 2009
Revised Manuscript: January 13, 2010
Manuscript Accepted: January 14, 2010
Published: February 17, 2010

Yingjie Zhang, Ruoyang Zhang, Qingru Wang, Zhishuai Zhang, Haibo Zhu, Jiadong Liu, Feng Song, Shanxin Lin, and Edwin Yue Bun Pun, "Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle," Opt. Express 18, 4316-4328 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. P. Andrew and W. L. Barnes, “Molecular fluorescence above metallic gratings,” Phys. Rev. B 64(12), 125405 (2001). [CrossRef]
  3. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002). [CrossRef] [PubMed]
  4. J. Kalkman, C. Strohhöfer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83(1), 30–32 (2003). [CrossRef]
  5. Y. Wang and Z. P. Zhou, “Strong enhancement of erbium ion emission by a metallic double grating,” Appl. Phys. Lett. 89(25), 253122 (2006). [CrossRef]
  6. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Electric field enhancement and light transmission in cylindrical nanoholes,” J. Comput. Theor. Nanosci. 4, 239–246 (2007).
  7. M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009). [CrossRef] [PubMed]
  8. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75(3), 033309 (2007). [CrossRef]
  9. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008). [CrossRef]
  10. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863–3865 (2004). [CrossRef]
  11. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  12. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007). [CrossRef] [PubMed]
  13. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007). [CrossRef]
  14. R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105(3), 033107 (2009). [CrossRef]
  15. T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express 15(20), 12806–12817 (2007). [CrossRef] [PubMed]
  16. M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, “Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators,” Phys. Rev. Lett. 100(20), 203002 (2008). [CrossRef] [PubMed]
  17. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  18. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7(2), 334–337 (2007). [CrossRef] [PubMed]
  19. E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express 17(17), 14586–14598 (2009). [CrossRef] [PubMed]
  20. C. F. Bohern, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  21. M. Kerker, D.-S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159 (1980). [CrossRef] [PubMed]
  22. Y.-L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34(21), 4573–4588 (1995). [CrossRef] [PubMed]
  23. R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76(4), 1681–1684 (1982). [CrossRef]
  24. X. M. Liu, X. F. Yang, F. Y. Lu, J. H. Ng, X. Q. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13(1), 142–147 (2005). [CrossRef] [PubMed]
  25. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett. 12(11), 888–890 (1987). [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  27. H. Lin, E. Y. B. Pun, S. Q. Man, and X. R. Liu, “Optical transitions and frequency upconversion of Er3+ ions in Na2O⋅Ga3Al2Ge3O12 glasses,” J. Opt. Soc. Am. B 18(5), 602–609 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited