OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4356–4364

Stretch-tuneable dielectric mirrors and optical microcavities

Mathias Kolle, Bo Zheng, Nicholas Gibbons, Jeremy J. Baumberg, and Ullrich Steiner  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4356-4364 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate how tuneable Distributed Bragg Reflectors (DBRs) and resonant micro-cavities can be built by a scalable layer assembly of the transparent utility rubbers polydimethylsiloxane and polystyrene-polyisoprene. Stretching the devices by more than 60% leads to an affine contraction of the layer thicknesses thereby tuning both DBR and cavity modes across the entire visible spectrum. Such rapidly- and reversibly- stretch-tuneable cavities can be used in tuneable micro-lasers and for quantitative optical strain sensing applications.

© 2010 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Devices

Original Manuscript: December 23, 2009
Revised Manuscript: January 27, 2010
Manuscript Accepted: February 3, 2010
Published: February 17, 2010

Mathias Kolle, Bo Zheng, Nicholas Gibbons, Jeremy J. Baumberg, and Ullrich Steiner, "Stretch-tuneable dielectric mirrors and optical microcavities," Opt. Express 18, 4356-4364 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, 2005).
  2. F. Abeles, "Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces," Ann. Phys. 5, 596-640 (part I), 706-784 (part II) (1950).
  3. O.S. Heavens, Optical properties of thin solid films, (Dover Publications, 1965).
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A Dielectric Omnidirectional Reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  5. D. L. Huffaker and D. G. Deppe, "Low threshold vertical-cavity surface-emitting lasers based on high contrast distributed Bragg reflectors," Appl. Phys. Lett. 70, 1781-1783 (1997). [CrossRef]
  6. E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, "Resonant cavity light emitting diode," Appl. Phys. Lett. 60, 921-923 (1992). [CrossRef]
  7. H. Jiang, E. Johnson, K. Eyink, J. Grant, D. Tomlin, and T. Bunning, "Plasma Polymerized Multi-Layered Photonic Films," Chem. Mater. 15, 340-347 (2003). [CrossRef]
  8. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J. Ouderkirk, "Giant Birefringent Optics in Multilayer Polymer Mirrors," Science 287, 2451-2456 (2000). [CrossRef] [PubMed]
  9. T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, "Multi-layered mirrors fabricated by spin-coating organic polymers," Thin Solid Films 515, 3887-3892 (2007). [CrossRef]
  10. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, and Y. Fink, "Polymer-based photonic crystals," Adv. Mater. 13(6), 421-425 (2001). [CrossRef]
  11. S. Setzu, P. Ferrand, and R. Romestain, "Optical properties of multilayered porous silicon," Mater. Sci. Eng. B 69, 34-42 (2000). [CrossRef]
  12. W. Gellermann, M. Kohmoto, Sutherland, and P. C. Taylor, "Localization of light wave in Fibonacci dielectric multilayers," Phys. Rev. Lett. 72(5), 633-636 (1994). [CrossRef] [PubMed]
  13. R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Ilegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65(15), 1883-1885 (1994). [CrossRef]
  14. R. Langer, A. Barski, J. Simon, N. T. Pelekanos, O. Konovalov, and R. Andre, "High-reflectivity GaN/GaAlN Bragg mirrors at blue/green wavelengths grown by molecular beam epitaxy," Appl. Phys. Lett. 743610-3612 (1999). [CrossRef]
  15. L. Martinu and D. Poitras, "Plasma deposition of optical films and coatings: A review," J. Vac. Sci. Tech. A 18, 2619-2645 (2000). [CrossRef]
  16. F. Serra, M. A. Matranga, Y. Ji, and E. M. Terentjev, "Single-mode laser tuning from cholesteric elastomers using a notch band-gap configuration," Opt. Express 18, 575-581 (2010). [CrossRef] [PubMed]
  17. Y. Hirota, Y. Ji, F. Serra, A. R. Tajbakhsh, and E. M. Terentjev, "Effect of cross linking on the photonic bandgap in deformable cholesteric elastomers," Opt. Express 16, 5320-5331 (2008). [CrossRef] [PubMed]
  18. P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, "Photonic gaps in cholesteric elastomers under deformation," Phys. Rev. E 70, 011703 (2004). [CrossRef]
  19. L. Domash, M. Wu, N. Nemchuk, and E. Ma, "Tunable and switchable multiple-cavity thin film filters," J. Lightwave Technol. 22(1), 126-135 (2004). [CrossRef]
  20. W. Mönch, J. Dehnert, O. Prucker, J. Rühe, and H. Zappe, "Tunable Bragg filters based on polymer swelling," Appl. Opt. 45, 4284-4290 (2006). [CrossRef] [PubMed]
  21. Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, "Broad-wavelength-range chemically tunable block copolymer photonic gels," Nat. Mater. 6, 957-960 (2007). [CrossRef] [PubMed]
  22. M. Sandrock, M. Wiggins, J. S. Shirk, H. Tai, A. Ranade, E. Baer, and A. Hiltner, "A widely tunable refractive index in a nanolayered photonic material," Appl. Phys. Lett. 84, 18, 3621-3623 (2004). [CrossRef]
  23. M. Kimura, K. Okahara, and T. Miyamoto, "Tunable multilayer-film distributed-Bragg-reflector filter," J. Appl. Phys. 50, 1222-1225 (1979). [CrossRef]
  24. S. Shojaei-Zadeh, S. R. Swanson, and S. L. Anna, "Highly uniform micro-cavity arrays in flexible elastomer film," Soft Matter 5, 743-746 (2009). [CrossRef]
  25. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, "Nanoparticle-tuned structural color from polymer opals," Opt. Express 15, 9553-9561 (2007). [CrossRef] [PubMed]
  26. J. Li, Y. Wu, J. Fu, Y. Cong, J. Peng, and Y. Han, "Reversibly strain-tunable elastomeric photonic crystals," Chem. Phys. Lett. 390(1-3), 285-289 (2004). [CrossRef]
  27. N. Gibbons, J.J. Baumberg, C.L. Bower, M. Kolle, and U. Steiner, "Scalable Cylindrical Metallo-dielectric Metamaterials," Adv. Mater. 21, 3933 (2009). [CrossRef]
  28. A. V. Kavokin and J. J. Baumberg, ‘Microcavities, (Oxford University Press, 2007). [CrossRef]
  29. W. Caseri, "Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties," Macromol. Rapid Commun. 21, 705-722 (2000). [CrossRef]
  30. M. Rubinstein and R. H. Colby, Polymer Physics, (Oxford University Press, 2003).
  31. A. Hotta, S. M. Clarke and E. M. Terentjev, "Stress Relaxation in Transient Networks of Symmetric Triblock Styrene-Isoprene-Styrene Copolymer," Macromolecules 35, 271-277 (2000) [CrossRef]
  32. R. C. Pennington, G. D’Alessandro, J. J. Baumberg, and M. Kaczmarek, "Spectral properties and modes of surface microcavities," Phys. Rev. A 79, 043822 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited