OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4371–4379

Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering

Young Jong Lee, Sapun H. Parekh, Yeon Ho Kim, and Marcus T. Cicerone  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4371-4379 (2010)
http://dx.doi.org/10.1364/OE.18.004371


View Full Text Article

Enhanced HTML    Acrobat PDF (582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an optimization of continuum generation in a commercially available photonic crystal fiber and show that this continuum can be used to simultaneously measure vibrational dephasing times over an unprecedented frequency range of Raman modes. The dephasing time measurement is based on 2-pulse 3-color coherent anti-Stokes Raman scattering (CARS), and requires a continuum pulse that is coherent over a broad spectral bandwidth. We demonstrate that a continuum with the required characteristics can be generated from a photonic crystal fiber by appropriately conditioning the chirp of the excitation pulse and controlling its pulse energy. We are able to simultaneously measure vibrational dephasing times of multiple Raman modes (covering 500 cm−1 to 3100 cm−1) of acetonitrile and benzonitrile using the optimized continuum with broadband time-resolved CARS.

© 2010 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 4, 2010
Revised Manuscript: January 28, 2010
Manuscript Accepted: January 28, 2010
Published: February 17, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Young Jong Lee, Sapun H. Parekh, Yeon Ho Kim, and Marcus T. Cicerone, "Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering," Opt. Express 18, 4371-4379 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33(7), 580–585 (2002). [CrossRef]
  2. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004). [CrossRef] [PubMed]
  3. H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004). [CrossRef]
  4. Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32(22), 3370–3372 (2007). [CrossRef] [PubMed]
  5. Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008). [CrossRef]
  6. A. Laubereau and W. Kaiser, “Vibrational Dynamics of Liquids and Solids Investigated by Picosecond Light-Pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978). [CrossRef]
  7. A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, “Vibrational-Relaxation Processes in Isotropic Molecular Liquids - A Critical Comparison,” J. Raman Spectrosc. 26(3), 179–216 (1995). [CrossRef]
  8. H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37(1-3), 411–415 (2006). [CrossRef]
  9. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007). [CrossRef] [PubMed]
  10. B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008). [CrossRef] [PubMed]
  11. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002). [CrossRef]
  12. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006). [CrossRef] [PubMed]
  13. K. B. Shi, P. Li, and Z. W. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007). [CrossRef]
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  15. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687–693 (2005). [CrossRef]
  16. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005). [CrossRef] [PubMed]
  17. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007). [CrossRef]
  18. L. B. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008). [CrossRef] [PubMed]
  19. Certain equipment is identified in this Letter to specify adequately the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology, nor does it imply that the equipment is necessarily the best available for this purpose.
  20. http://nktphotonics.com/files/files/datasheet_fw-800.pdf
  21. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002). [CrossRef]
  22. J. B. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Appl. Opt. 36(1), 397–401 (1997). [CrossRef] [PubMed]
  23. H. W. Hubble, T. S. Lai, and M. A. Berg, “Raman free-induction-decay measurements in low viscosity and supercooled toluene: Vibrational dephasing by shear fluctuations,” J. Chem. Phys. 114(8), 3662–3673 (2001). [CrossRef]
  24. R. Inaba, H. Okamoto, K. Yoshihara, and M. Tasumi, “Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering,” J. Phys. Chem. 96(21), 8385–8390 (1992). [CrossRef]
  25. D. Vanden Bout, L. Muller, and M. Berg, “Ultrafast Raman echoes in liquid acetonitrile,” Phys. Rev. Lett. 67(26), 3700–3703 (1991). [CrossRef] [PubMed]
  26. M. Fickenscher and A. Laubereau, “High-Precision Femtosecond CARS of Simple Liquids,” J. Raman Spectrosc. 21(12), 857–861 (1990). [CrossRef]
  27. R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993). [CrossRef]
  28. H. Okamoto, R. Inaba, K. Yoshihara, and M. Tasumi, “Femtosecond Time-Resolved Polarized Coherent Anti-Stokes Raman Studies on Reorientational Relaxation in Benzonitrile,” Chem. Phys. Lett. 202(1-2), 161–166 (1993). [CrossRef]
  29. H. Hamaguchi and T. L. Gustafson, “Ultrafast Time-Resolved Spontaneous and Coherent Raman-Spectroscopy - the Structure and Dynamics of Photogenerated Transient Species,” Annu. Rev. Phys. Chem. 45(1), 593–622 (1994). [CrossRef]
  30. J. C. Deäk, L. K. Iwaki, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: Ultrafast IR-Raman spectroscopy of acetonitrile,” J. Phys. Chem. A 102(42), 8193–8201 (1998). [CrossRef]
  31. D. Bhattacharjee, A. G. Purkayastha, T. N. Misra, and S. K. Nandy, “Raman Spectral Study of Vibrational Relaxation of the CN Stretching Band of Acetonitrile and Benzonitrile,” Journal of Raman Spectroscopy 27(6), 457–461 (1996). [CrossRef]
  32. B. Dick, “Response Function-Theory of Time-Resolved CARS and CSRS of Rotating Molecules in Liquids Under General Polarization Conditions,” Chem. Phys. 113(1), 131–147 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited