OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4390–4395

Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics

M. Tokurakawa, H. Kurokawa, Ae. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4390-4395 (2010)
http://dx.doi.org/10.1364/OE.18.004390


View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present cw and mode-locked laser operations on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics. In continuous-wave laser operations, the average power of 2.9 W at the wavelength of 1051 nm and 2.8 W at the wavelength of 1031 nm with above 40% optical-to-optical efficiencies were achieved. In mode-locked laser operation, pulses as short as 69 fs with the average power of 820 mW was also obtained.

© 2010 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 6, 2010
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 6, 2010
Published: February 17, 2010

Citation
M. Tokurakawa, H. Kurokawa, Ae. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics," Opt. Express 18, 4390-4395 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000). [CrossRef]
  2. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007). [CrossRef]
  3. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
  4. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004). [CrossRef] [PubMed]
  5. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12230 . [CrossRef] [PubMed]
  6. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004). [CrossRef]
  7. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001). [CrossRef]
  8. F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009). [CrossRef] [PubMed]
  9. A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).
  10. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539 . [CrossRef] [PubMed]
  11. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006). [CrossRef] [PubMed]
  12. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007). [CrossRef] [PubMed]
  13. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004). [CrossRef] [PubMed]
  14. C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006). [CrossRef]
  15. A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005). [CrossRef]
  16. A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008). [CrossRef]
  17. O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kouznetsov, A. N. Nakladov, V. V. Osiko, H. Jelinkova, and J. Šulc, “Spectroscopic and Oscillation Properties of Yb3+Ions in BaF2-SrF2-CaF2Crystals and Ceramics,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB25.
  18. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 . [CrossRef] [PubMed]
  19. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007). [CrossRef] [PubMed]
  20. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008). [CrossRef] [PubMed]
  21. A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009). [CrossRef]
  22. E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, A. J. Schmidt, A. I. Zagumennyi, G. B. Loutts, E. W. Zharikov, and I. A. Shcherbakov, “Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” J. Opt. Soc. Am. B 10(8), 1436–1442 (1993). [CrossRef]
  23. K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004). [CrossRef]
  24. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16(6), 895–904 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited