OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4428–4433

Vector dark domain wall solitons in a fiber ring laser

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4428-4433 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe a novel type of vector dark soliton in a fiber ring laser. The vector dark soliton consists of stable localized structures separating the two orthogonal linear polarization eigenstates of the laser emission and is visible only when the total laser emission is measured. Numerical simulations based on the coupled complex Ginzburg-Landau equations have well reproduced the results of the experimental observation.

© 2010 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 10, 2009
Revised Manuscript: February 6, 2010
Manuscript Accepted: February 6, 2010
Published: February 18, 2010

H. Zhang, D. Y. Tang, L. M. Zhao, and R. J. Knize, "Vector dark domain wall solitons in a fiber ring laser," Opt. Express 18, 4428-4433 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991). [CrossRef] [PubMed]
  2. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001). [CrossRef] [PubMed]
  3. D. Y. Tang, L. M. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005). [CrossRef] [PubMed]
  4. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009). [CrossRef] [PubMed]
  5. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987). [CrossRef] [PubMed]
  6. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12(3), 434–439 (1995). [CrossRef]
  7. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Optical solitary waves induced by cross-phase modulation,” Opt. Lett. 13(10), 871–873 (1988). [CrossRef] [PubMed]
  8. D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13(1), 53–55 (1988). [CrossRef] [PubMed]
  9. Y. S. Kivshar and S. K. Turitsyn, “Vector dark solitons,” Opt. Lett. 18(5), 337–339 (1993). [CrossRef] [PubMed]
  10. M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19(2), 96–98 (1994). [CrossRef] [PubMed]
  11. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998). [CrossRef]
  12. E. Seve, G. Millot, S. Wabnitz, T. Sylvestre, and H. Maillotte, “Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber,” J. Opt. Soc. Am. B 16(10), 1642–1650 (1999). [CrossRef]
  13. C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34(14), 2096–2098 (2009). [CrossRef] [PubMed]
  14. Q. L. Williams and R. Roy, “Fast polarization dynamics of an erbium-doped fiber ring laser,” Opt. Lett. 21(18), 1478–1480 (1996). [CrossRef] [PubMed]
  15. B. Meziane, F. Sanchez, G. M. Stephan, and P. L. François, “Feedback-induced polarization switching in a Nd-doped fiber laser,” Opt. Lett. 19(23), 1970–1972 (1994). [CrossRef] [PubMed]
  16. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoltion formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005). [CrossRef]
  17. B. A. Malomed, “Optical domain walls,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(2), 1565–1571 (1994). [CrossRef] [PubMed]
  18. B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, “Domain boundaries in convection patterns,” Phys. Rev. A 42(12), 7244–7263 (1990). [CrossRef] [PubMed]
  19. B. A. Malomed, “Domain wall between traveling waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), R3310–R3313 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited