OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4449–4456

Plasma power controlled deposition of SiOx with manipulated Si Quantum Dot size for photoluminescent wavelength tailoring

Bo-Han Lai, Chih-Hsien Cheng, Yi-Hao Pai, and Gong-Ru Lin  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4449-4456 (2010)
http://dx.doi.org/10.1364/OE.18.004449


View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasma power controlled PECVD of SiOx under SiH4/N2O gas mixture with manipulated Si quantum dot (Si-QD) size for tailoring photoluminescent (PL) wavelength is demonstrated. The incomplete decomposition of N2O at high plasma power facilitates Si-rich SiOx deposition to enlarge O/Si composition ratio and to shrink Si-QD size. As RF plasma power increases from 20 to 70 W, the O/Si ratio is increased from 1 to 1.6 and the average Si-QD size is reduced from 4.5 to 1.7, which increases Si-QD density from 3.2 × 1017 to 3.02 × 1018 cm−3 and blue-shifts PL wavelength from 780 to 380 nm.

© 2010 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(310.1860) Thin films : Deposition and fabrication
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: June 4, 2009
Revised Manuscript: November 25, 2009
Manuscript Accepted: November 29, 2009
Published: February 19, 2010

Citation
Bo-Han Lai, Chih-Hsien Cheng, Yi-Hao Pai, and Gong-Ru Lin, "Plasma power controlled deposition of SiOx with manipulated Si Quantum Dot size for photoluminescent wavelength tailoring," Opt. Express 18, 4449-4456 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. T. Canham, “Si quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990). [CrossRef]
  2. G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002). [CrossRef]
  3. P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, “Room-temperature visible luminescence from Si nanocrystals in Si implanted SiO2 layers,” Appl. Phys. Lett. 66(7), 851–853 (1995). [CrossRef]
  4. Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno, “Visible photoluminescence from Si microcrystals embedded in SiO2 glass films,” Jpn. J. Appl. Phys. 31(Part 2, No. 3B), L365–L366 (1992). [CrossRef]
  5. C. J. Lin, C. K. Lin, C. W. Chang, Y. L. Chueh, H. C. Kuo, W. G. Diau, L. J. Chou, and G. R. Lin, “Photoluminescence of Plasma Enhanced Chemical Vapor Deposition Amorphous Silicon Oxide with Silicon Nanocrystals Grown at Different Fluence Ratios and Substrate Temperatures,” Jpn. J. Appl. Phys. 45(No. 2A), 1040–1043 (2006). [CrossRef]
  6. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48(15), 11024–11036 (1993). [CrossRef]
  7. X. D. Pi, R. W. Liptak, J. D. Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotech. 19(24), 245603 (2008). [CrossRef]
  8. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999). [CrossRef]
  9. J. C. Cheang-Wong, A. Oliver, J. Roiz, J. M. Hernandez, L. Rodrigues-Fernandez, J. G. Morales, and A. Crespo-Sosa, “Optical properties of Ir2+-implanted silica glass,” Nucl. Instrum. Methods Phys. Res. B 175, 490–494 (2001). [CrossRef]
  10. H. S. Bae, T. G. Kim, C. N. Whang, S. Im, J. S. Yun, and J. H. Song, “Electroluminescence mechanism in SiOx layers containing radiative centers,” J. Appl. Phys. 91(7), 4078 (2002). [CrossRef]
  11. J. B. Khurgin, E. W. Forsythe, G. S. Tompa, and B. A. Khan, “Influence of the size dispersion on the emission spectra of the Si nanostructures,” Appl. Phys. Lett. 69(9), 1241–1243 (1996). [CrossRef]
  12. D. B. Williams, and C. B. Carter, Transmission Electron Microscopy, New York: Plenum, pp. 599–619 (1996).
  13. D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effect of the neighbors and alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B 40(3), 1795–1805 (1989). [CrossRef]
  14. W. B. Pollard and G. Lucovsky, “Phonons in polysilane alloys,” Phys. Rev. B 26(6), 3172–3180 (1982). [CrossRef]
  15. G. Lucovsky, “A structural interpretation of the infrared-absorption spectra of A-Si-H-O alloys,” Sol. Energy Mater. 8(1-3), 165–175 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited