OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4499–4509

Witnessing effective entanglement over a 2 km fiber channel

Christoffer Wittmann, Josef Fürst, Carlos Wiechers, Dominique Elser, Hauke Häseler, Norbert Lütkenhaus, and Gerd Leuchs  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4499-4509 (2010)
http://dx.doi.org/10.1364/OE.18.004499


View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a fiber-based continuous-variable quantum key distribution system. In the scheme, a quantum signal of two non-orthogonal weak optical coherent states is sent through a fiber-based quantum channel. The receiver simultaneously measures conjugate quadratures of the light using two homodyne detectors. From the measured Q-function of the transmitted signal, we estimate the attenuation and the excess noise caused by the channel. The estimated excess noise originating from the channel and the channel attenuation including the quantum efficiency of the detection setup is investigated with respect to the detection of effective entanglement. The local oscillator is considered in the verification. We witness effective entanglement with a channel length of up to 2km.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5570) Quantum optics : Quantum detectors
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: November 16, 2009
Revised Manuscript: February 1, 2010
Manuscript Accepted: February 2, 2010
Published: February 19, 2010

Citation
Christoffer Wittmann, Josef Fürst, Carlos Wiechers, Dominique Elser, Hauke Häseler, Norbert Lütkenhaus, and Gerd Leuchs, "Witnessing effective entanglement over a 2km fiber channel," Opt. Express 18, 4499-4509 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4499


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kerckhoffs, La cryptographie militaire (Journal des sciences militaires, Vol. IX, pp. 5-38, 1883).
  2. C. Shannon, "Communication theory of secrecy systems," Bell Sys. Tech. J. 28, 656-715 (1949).
  3. G. Vernam, "Cipher printing telegraph systems for secret wire and radio telegraphic communications," J. Amer. Inst. Elect. Eng., 109 (1926).
  4. C. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangarore India pp. 175-179 (1984). [PubMed]
  5. C. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992). [CrossRef]
  6. A. Ekert, J. Rarity, P. Tapster, and G. Palma, "Practical quantum cryptography based on 2-photon interferometry," Phys. Rev. Lett. 69, 1293-1295 (1992). [CrossRef] [PubMed]
  7. A. Muller, J. Breguet, and N. Gisin, "Experimental demonstration of quantum cryptography using polarized photons in optical-fiber over more than 1 km," Europhys. Lett. 23, 383-388 (1993). [CrossRef]
  8. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41 (2002). [CrossRef]
  9. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-distance decoy-state quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 10503 (2007). [CrossRef]
  10. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Entanglement-based quantum communication over 144km," Nat. Phys. 3, 481-486 (2007). [CrossRef]
  11. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, "Experimental demonstration of free-space decoystate quantum key distribution over 144 km," Phys. Rev. Lett. 98, 010504 (2007). [CrossRef] [PubMed]
  12. T. C. Ralph, "Continuous variable quantum cryptography," Phys. Rev. A 61, 010303 (1999). [CrossRef]
  13. C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, "Continuous variable quantum cryptography: Beating the 3 dB loss limit," Phys. Rev. Lett. 89, 167901 (2002). [CrossRef] [PubMed]
  14. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003). [CrossRef] [PubMed]
  15. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, "Quantum key distribution over 25 km with an all-fiber continuous-variable system," Phys. Rev. A 76, 042305-10 (2007). [CrossRef]
  16. B. Qi, L. Huang, L. Qian, and H. Lo, "Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers," Phys. Rev. A 76, 052323-9 (2007). [CrossRef]
  17. S. Lorenz, N. Korolkova, and G. Leuchs, "Continuous-variable quantum key distribution using polarization encoding and post selection," Appl. Phys. B 79, 273-277 (2004). [CrossRef]
  18. A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, "No-switching quantum key distribution using broadband modulated coherent light," Phys. Rev. Lett. 95, 180503 (2005). [CrossRef] [PubMed]
  19. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, "Trojan-horse attacks on quantum-key-distribution systems," Phys. Rev. A 73, 022320 (2006). [CrossRef]
  20. S. Pirandola, S. Mancini, S. Lloyd, and S. L. Braunstein, "Continuous-variable quantum cryptography using two-way quantum communication," Nat. Phys. 4, 726-730 (2008). [CrossRef]
  21. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, "Coherent-state quantum key distribution without random basis switching," Phys. Rev. A 73, 022316-9 (2006). [CrossRef]
  22. J. Lodewyck and P. Grangier, "Tight bound on the coherent-state quantum key distribution with heterodyne detection," Phys. Rev. A 76, 022332 (2007). [CrossRef]
  23. D. Elser, T. Bartley, B. Heim, C. Wittmann, D. Sych, and G. Leuchs, "Feasibility of free space quantum key distribution with coherent polarization states," New J. Phys. 11, 045014 (2009). [CrossRef]
  24. D. Elser, C. Wittmann, U. L. Andersen, O. Glöckl, S. Lorenz, C. Marquardt, and G. Leuchs, "Guided acoustic wave brillouin scattering in photonic crystal fibers," J. Phys. Conf. Ser. 92, 012108 (2007). [CrossRef]
  25. N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn, "Polarization squeezing and continuous variable polarization entanglement," Phys. Rev. A 65, 052306 (2002). [CrossRef]
  26. H. Häseler, T. Moroder, and N. Lütkenhaus, "Testing quantum devices: Practical entanglement verification in bipartite optical systems," Phys. Rev. A 77, 032303-11 (2008). [CrossRef]
  27. C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, "Linear optical sampling," IEEE Photonics Technol. Lett. 15, 1746-1748 (2003). [CrossRef]
  28. C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121 (1992). [CrossRef] [PubMed]
  29. Y. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, "Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks," Phys. Rev. A 79, 012307-14 (2009). [CrossRef]
  30. M. Curty, M. Lewenstein, and N. Lütkenhaus, "Entanglement as a precondition for secure quantum key distribution," Phys. Rev. Lett. 92, 217903 (2004). [CrossRef] [PubMed]
  31. C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without bell’s theorem," Phys. Rev. Lett. 68, 557 (1992). [CrossRef] [PubMed]
  32. J. Rigas, O. Gühne, and N. Lütkenhaus, "Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure," Phys. Rev. A 73, 012341-6 (2006). [CrossRef]
  33. U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, 1997).
  34. M. Legré, H. Zbinden, and N. Gisin, "Implementation of continuous variable quantum cryptography in optical fibres using a go-&-return configuration," Quantum Inf. Comput. 6, 326-335 (2006).
  35. J. A. Nelder and R. Mead, "A simplex method for function minimization," The Computer Journal 7, 308-313 (1965).
  36. J. Shapiro and S. Wagner, "Phase and amplitude uncertainties in heterodyne detection," IEEE J. Quantum Electron. 20, 803-813 (1984). [CrossRef]
  37. S. Stenholm, "Simultaneous measurement of conjugate variables," Ann. Phys. 218, 233-254 (1992). [CrossRef]
  38. U. Leonhardt and H. Paul, "Realistic optical homodyne measurements and quasi-probability distributions," Phys. Rev. A 48, 4598-4604 (1993). [CrossRef] [PubMed]
  39. H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. Lvovsky, J. Mlynek, and S. Schiller, "Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements," Opt. Lett. 26, 1714-1716 (2001). [CrossRef]
  40. U. Leonhardt, J. A. Vaccaro, B. Böhmer, and H. Paul, "Canonical and measured phase distributions," Phys. Rev. A 51, 84 (1995). [CrossRef] [PubMed]
  41. H. Bachor and T. Ralph, A guide to experiments in quantum optics (Wiley-VCH Verlag, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited