OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4538–4546

Double photonic bandgaps dynamically induced in a tripod system of cold atoms

Cui-Li Cui, Jin-Hui Wu, Jin-Wei Gao, Yan Zhang, and Nuo Ba  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4538-4546 (2010)
http://dx.doi.org/10.1364/OE.18.004538


View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tripod atomic system driven by two standing-wave fields (a coupling and a driving) is explored to generate tunable double photonic bandgaps in the regime of electromagnetically induced transparency. Both photonic bandgaps depend critically on frequency detunings, spatial periodicities, and initial phases of the two standing-wave fields. When the coupling and driving detunings are very close, a small fluctuation of one standing-wave field may demolish both photonic bandgaps. If the two detunings are greatly different, however, each standing-wave field determines only one photonic bandgap in a less sensitive way. Dynamic generation and elimination of a pair of photonic bandgaps shown here may be exploited toward the end of simultaneous manipulation of two weak light signals even at the single-photon level.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Quantum Optics

History
Original Manuscript: December 10, 2009
Revised Manuscript: January 28, 2010
Manuscript Accepted: January 30, 2010
Published: February 19, 2010

Citation
Cui-Li Cui, Jin-Hui Wu, Jin-Wei Gao, Yan Zhang, and Nuo Ba, "Double photonic bandgaps dynamically induced in a tripod system of cold atoms," Opt. Express 18, 4538-4546 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50 (7), 36 (1997). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999). [CrossRef]
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999). [CrossRef]
  5. S.-M. Ma, H. Xu, and B. S. Ham, "Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime," Opt. Express 17, 14902 (2009). [CrossRef] [PubMed]
  6. M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094 (2000). [CrossRef] [PubMed]
  7. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulsed," Nature (London) 409, 490 (2001). [CrossRef] [PubMed]
  8. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage time greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005). [CrossRef] [PubMed]
  9. H.-H. Wang, X.-G. Wei, L. Wang, Y.-J. Li, D.-M. Du, J.-H. Wu, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, "Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal," Opt. Express 15, 16044 (2007). [CrossRef] [PubMed]
  10. R. Corbalan, A. N. Pisarchik, V. N. Chizhevsky, and R. Vilaseca, "Experimental study of bi-directional pumping of a far-infrared laser," Opt. Commun. 133, 225 (1997). [CrossRef]
  11. H. Y. Ling, Y. Q. Li, and M. Xiao, "Electromagnetically induced grating: Homogeneously broadened medium," Phys. Rev. A 57, 1338 (1998). [CrossRef]
  12. A. Andre and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002). [CrossRef] [PubMed]
  13. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature (London) 426, 638 (2003). [CrossRef] [PubMed]
  14. X.-M. Su and B. S. Ham, "Dynamic control of the photonic band gap using quantum coherence," Phys. Rev. A 71, 013821 (2005). [CrossRef]
  15. H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93, 073601 (2004). [CrossRef] [PubMed]
  16. M. Artoni and G. C. La Rocca, "Optically tunable photonic stop bands in homogeneous absorbing media," Phys. Rev. Lett. 96, 073905 (2006). [CrossRef] [PubMed]
  17. D. Petrosyan, "Tunable photonic band gaps with coherently driven atoms in optical lattices," Phys. Rev. A 76, 053823 (2007). [CrossRef]
  18. J.-H. Wu, M. Artoni, and G. C. La Rocca, "Controlling the photonic band structure of optically driven cold atoms," J. Opt. Soc. Am. B 25, 1840 (2008). [CrossRef]
  19. Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006). [CrossRef]
  20. J.-H. Wu, G. C. La Rocca, and M. Artoni, "Controlled light-pulse propagation in driven color centers in diamond," Phys. Rev. B 77, 113106 (2008). [CrossRef]
  21. I. Friedler, G. Kurizki, and D. Petrosyan, "Deterministic quantum logic with photons via optically induced photonic bandgaps," Phys. Rev. A 71, 023803 (2005). [CrossRef]
  22. A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94, 063902 (2005). [CrossRef] [PubMed]
  23. J.-H. Wu, M. Artoni, and G. C. La Rocca, "All-optical light confinement in dynamic cavities in cold atoms," Phys. Rev. Lett. 103, 133601 (2009). [CrossRef] [PubMed]
  24. A.W. Brown and M. Xiao, "All-optical switching and routing based on an electromagnetically induced absorption grating," Opt. Lett. 30, 699 (2005). [CrossRef] [PubMed]
  25. J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010). [CrossRef]
  26. D. Petrosyan and Y. P. Malakyan, "Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration," Phys. Rev. A 70, 023822 (2004). [CrossRef]
  27. S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004). [CrossRef]
  28. A. MacRae, G. Campbell, and A. I. Lvovsky, "Matched slow pulses using double electromagnetically induced transparency," Opt. Lett. 33, 2659 (2008). [CrossRef] [PubMed]
  29. L. Karpa, F. Vewinger, and M. Weitz, "Resonance beating of light stored using atomic spinor polaritons," Phys. Rev. Lett. 101, 170406 (2008). [CrossRef] [PubMed]
  30. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1980), 6th ed.
  31. E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited