OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4547–4556

Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C.F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4547-4556 (2010)
http://dx.doi.org/10.1364/OE.18.004547


View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the fabrication and characterization of the first guiding chalcogenide As2S3 microstructured optical fibers (MOFs) with a suspended core. At 1.55 µm, the measured losses are approximately 0.7 dB/m or 0.35 dB/m according to the MOF core size. The fibers have been designed to present a zero dispersion wavelength (ZDW) around 2 µm. By pumping the fibers at 1.55 µm, strong spectral broadenings are obtained in both 1.8 and 45-m-long fibers by using a picosecond fiber laser.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 18, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 7, 2010
Published: February 19, 2010

Citation
M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C.F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, "Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers," Opt. Express 18, 4547-4556 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A New Optical Fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).
  2. G. P. Agrawal, Application of nonlinear fiber optics”, Academic Press, Boston 2001.
  3. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  5. R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994). [CrossRef]
  6. F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998). [CrossRef]
  7. F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000). [CrossRef]
  8. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000). [CrossRef]
  9. F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 658803 (2007). [CrossRef]
  10. J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004). [CrossRef]
  11. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006). [CrossRef] [PubMed]
  12. G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J. C. Jules, F. Smektala, and L. Tong, “Demonstration of a Reef Knot Microfiber Resonator,” Opt. Express 17(8), 6224–6229 (2009). [CrossRef] [PubMed]
  13. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  14. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005). [CrossRef] [PubMed]
  15. D. P. Wei, T. V. Galstian, I. V. Smolnikov, V. G. Plotnichenko, and A. Zohrabyan, “Spectral Broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13(7), 2439–2443 (2005). [CrossRef] [PubMed]
  16. L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007). [CrossRef]
  17. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008). [CrossRef]
  18. M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009). [CrossRef]
  19. C. Chaidhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol. 27(12), 2095–2099 (2009). [CrossRef]
  20. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003). [CrossRef] [PubMed]
  21. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  22. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]
  23. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 µm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009). [CrossRef] [PubMed]
  24. C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Désévédavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008). [CrossRef] [PubMed]
  25. F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009). [CrossRef] [PubMed]
  26. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008). [CrossRef] [PubMed]
  27. G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001). [CrossRef]
  28. G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).
  29. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, “Foundations of Photonic Crystal Fibres”, Imperial College Press, London, ISBN: 1–86094–507–4, (2005).
  30. M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, “Comparison of different methods for rigorous modeling of photonic crystal fibers,” Opt. Express 14(12), 5699–5714 (2006). [CrossRef] [PubMed]
  31. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  32. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30(11), 1264–1266 (2005). [CrossRef] [PubMed]
  33. G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004). [CrossRef]
  34. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996) (REMOVED HYPERLINK FIELD) (REMOVED HYPERLINK FIELD). [CrossRef] [PubMed]
  35. M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).
  36. J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Désévédavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009). [CrossRef]
  37. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005). [CrossRef]
  38. R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006). [CrossRef] [PubMed]
  39. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009). [CrossRef] [PubMed]
  40. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004). [CrossRef] [PubMed]
  41. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008). [CrossRef]
  42. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited