OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4564–4573

The Physics of ultrafast saturable absorption in graphene

Guichuan Xing, Hongchen Guo, Xinhai Zhang, Tze Chien Sum, and Cheng Hon Alfred Huan  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4564-4573 (2010)
http://dx.doi.org/10.1364/OE.18.004564


View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ultrafast saturable absorption in graphene is experimentally and theoretically investigated in the femtosecond (fs) time regime. This phenomenon is well-modeled with valence band depletion, conduction band filling and ultrafast intraband carrier thermalization. The latter is dominated by intraband carrier-carrier scattering with a scattering time of 8 ( ± 3) fs, which is far beyond the time resolution of other ultrafast techniques with hundred fs laser pulses. Our results strongly suggest that graphene is an excellent atomic layer saturable absorber.

© 2010 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: January 4, 2010
Revised Manuscript: February 9, 2010
Manuscript Accepted: February 9, 2010
Published: February 19, 2010

Virtual Issues
February 24, 2010 Spotlight on Optics

Citation
Guichuan Xing, Hongchen Guo, Xinhai Zhang, Tze Chien Sum, and Cheng Hon Alfred Huan, "The Physics of ultrafast saturable absorption in graphene," Opt. Express 18, 4564-4573 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. Wallace, “The band theory of graphite,” Phys. Rev. 71(9), 622–634 (1947). [CrossRef]
  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  4. P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007). [CrossRef]
  5. T. Ando, Y. S. Zheng, and H. Suzuura, “Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices,” J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002). [CrossRef]
  6. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of dirac quasiparticles in graphene,” Phys. Rev. Lett. 96(25), 256802 (2006). [CrossRef] [PubMed]
  7. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78(8), 085432 (2008). [CrossRef]
  8. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008). [CrossRef] [PubMed]
  9. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008). [CrossRef] [PubMed]
  10. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef] [PubMed]
  11. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008). [CrossRef] [PubMed]
  12. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008). [CrossRef]
  13. D. Sun, Z. K. Wu, C. Divin, X. Li, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett. 101(15), 157402 (2008). [CrossRef] [PubMed]
  14. R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express 17(4), 2326–2333 (2009). [CrossRef] [PubMed]
  15. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett. 102(8), 086809 (2009). [CrossRef] [PubMed]
  16. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband Nonlinear Optical Response of Graphene Dispersions,” Adv. Mater. 21(23), 2430–2435 (2009). [CrossRef]
  17. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94(2), 021902 (2009). [CrossRef]
  18. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006). [CrossRef] [PubMed]
  19. Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, and Z. X. Shen, “Raman spectroscopy of epitaxial graphene on a SiC substrate,” Phys. Rev. B 77(11), 115416 (2008). [CrossRef]
  20. J. C. Burton, L. Sun, F. H. Long, Z. C. Feng, and I. T. Ferguson, “First- and second-order Raman scattering from semi-insulating 4H-SiC,” Phys. Rev. B 59(11), 7282–7284 (1999). [CrossRef]
  21. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett. 7(2), 238–242 (2007). [CrossRef] [PubMed]
  22. J. Hass, F. Varchon, J. E. Millán-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, “Why multilayer graphene on 4H-SiC(0001[over ]) behaves like a single sheet of graphene,” Phys. Rev. Lett. 100(12), 125504 (2008). [CrossRef] [PubMed]
  23. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  24. Y. R. Shen, “The Principles of Nonlinear Optics,” John Wiley, New York and Chichester, 1984, pp. 334–336, 437–446.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited