OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4574–4589

Thin-film stack based integrated GRIN coupler with aberration-free focusing and super-high NA for efficient fiber-to-nanophotonic-chip coupling

Qian Wang, Yingyan Huang, Ter-Hoe Loh, Doris Keh Ting Ng, and Seng-Tiong Ho  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4574-4589 (2010)
http://dx.doi.org/10.1364/OE.18.004574


View Full Text Article

Enhanced HTML    Acrobat PDF (582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanophotonic chip coupling using an optical thin-film stack forming a micro graded-refractive-index (GRIN) lens with a super-high numerical aperture (NA) that is highly compact (tens of micron long) and can be directly integrated is presented. We explore the lens’ integration on the surface of Silicon-On-Insulator (SOI) platform with an asymmetric GRIN profile. We show that to achieve high efficiency for optical coupling between an optical fiber and a nanophotonic waveguide with a sub-wavelength (λ/n) beam size, conventional asymmetric parabolic GRIN profile is no longer adequate due to the super-high NA needed (>3.1), which results in severe spatial beam aberration at the focal plane. We present an efficient algorithm to computationally generate the ideal GRIN profile that is completely aberration free even at super-high NA, which improves the coupling efficiency from ~66% (parabolic case) to ~95%. A design example involving an optical thin-film stack using an improved dual-material approach is given. The performance of the thin-film stack is analyzed. This thin-film stack based GRIN lens is shown to be high in coupling efficiency, wavelength insensitive and compatible with standard thin-film process.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: September 4, 2009
Revised Manuscript: November 12, 2009
Manuscript Accepted: November 17, 2009
Published: February 22, 2010

Citation
Qian Wang, Yingyan Huang, Ter-Hoe Loh, Doris Keh Ting Ng, and Seng-Tiong Ho, "Thin-film stack based integrated GRIN coupler with aberration-free focusing and super-high NA for efficient fiber-to-nanophotonic-chip coupling," Opt. Express 18, 4574-4589 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optic. Lett. Vol. 28, pp. 1302–1304, 2003.
  2. L. Vivien, X. L. Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, Realization, and characterization of 3-D Taper for Fiber/Micro- Waveguide Coupling,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1354–1358 (2006). [CrossRef]
  3. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupling for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  4. D. Tailaert, W. Bogaerts, and R. Baets, “Efficient coupling between submicron SOI-waveguides and single-mode fibers”, Proc. Symposium IEEE/LEOS, 2003.
  5. B. Wang, J. Jiang, and G. P. Nordin, “Embedded slanted grating for vertical coupling between fibers and silicon-insulator planar waveguides,” IEEE Photon. Technol. Lett. 17(9), 1884–1886 (2005). [CrossRef]
  6. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-Compatible integrated silicon photonics devices,” IEEE Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006). [CrossRef]
  7. D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006). [CrossRef]
  8. Y. Huang and S. T. Ho, “Superhigh numerical aperture (NA>1.5) micro gradient-index lens based on a dual-material approach,” Opt. Lett. 30(11), 1291–1293 (2005). [CrossRef] [PubMed]
  9. R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, and L. Kimerling. AndJ. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90, 1–3 (2007).
  10. A. Delâge, S. Janz, B. Lamontagne, A. Bogdanov, D. Dalacu, D.-X. Xu, and K. P. Yap, “Monolithically integrated asymmetric graded and step-index couplers for microphotonic waveguides,” Opt. Express 14(1), 148–161 (2006). [CrossRef] [PubMed]
  11. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House Inc, 2000).
  12. G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17(24), 1743–1745 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited