OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4609–4614

Evaluating the performance of quantum point contacts as nanoscale terahertz sensors

Jungwoo Song, Gregory Aizin, Yukio Kawano, Koji Ishibashi, Nobuyuki Aoki, Yuichi Ochiai, John L. Reno, and Jonathan P. Bird  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4609-4614 (2010)
http://dx.doi.org/10.1364/OE.18.004609


View Full Text Article

Enhanced HTML    Acrobat PDF (706 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantum point contacts (QPCs) are nanoscale constrictions that are realized in a high-mobility two-dimensional electron gas by applying negative bias to split Schottky gates on top of a semiconductor. Here, we explore the suitability of these nanodevices to THz detection, by making use of their ability to rectify THz signals via the strong nonlinearities that exist in their conductance. In addition to demonstrating the configuration of these devices that provides optimal THz sensitivity, we also determine their noise equivalent power and responsivity. Our studies suggest that, with further optimization, QPCs can provide a viable approach to broadband THz sensing in the range above 1 THz.

© 2010 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.5570) Detectors : Quantum detectors
(040.6070) Detectors : Solid state detectors
(040.2235) Detectors : Far infrared or terahertz
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Detectors

History
Original Manuscript: November 17, 2009
Manuscript Accepted: February 15, 2010
Published: February 22, 2010

Citation
Jungwoo Song, Gregory Aizin, Yukio Kawano, Koji Ishibashi, Nobuyuki Aoki, Yuichi Ochiai, John L. Reno, and Jonathan P. Bird, "Evaluating the performance of quantum point contacts as nanoscale terahertz sensors," Opt. Express 18, 4609-4614 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Ferry, S. M. Goodnick, and J. P. Bird, Transport in Nanostructures, Cambridge University Press, Cambridge, U.K. (2009).
  2. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors,” Appl. Phys. Lett. 81(9), 1627–1629 (2002). [CrossRef]
  3. W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lu, M. S. Shur, C. A. Saylor, and L. C. Brunel, “Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor,” Appl. Phys. Lett. 80(18), 3433–3435 (2002). [CrossRef]
  4. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81(24), 4637–4639 (2002). [CrossRef]
  5. M. Lee, M. C. Wanke, and J. L. Reno, “Millimeter wave mixing using plasmon and bolometric response in a double-quantum-well field-effect transistor,” Appl. Phys. Lett. 86(3), 033501 (2005). [CrossRef]
  6. E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and S. J. Allen, “Single-quantum-well grating-gated terahertz plasmon detectors,” Appl. Phys. Lett. 87(19), 193507 (2005). [CrossRef]
  7. F. Teppe, W. Knap, D. Veksler, M. S. Shur, A. P. Dmitriev, V. Yu. Kachorovskii, and S. Rumyantsev, “Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor,” Appl. Phys. Lett. 87(5), 052107 (2005). [CrossRef]
  8. V. Ryzhii and M. S. Shur, “Resonant terahertz detector utilizing plasma oscillations in two-dimensional electron system with lateral Schottky junction,” Jpn. J. Appl. Phys. 45(42), L1118–L1120 (2006). [CrossRef]
  9. E. A. Shaner, M. C. Wanke, A. D. Grine, S. K. Lyo, J. L. Reno, and S. J. Allen, “Enhanced responsivity in membrane isolated split- grating-gate plasmonic terahertz detectors,” Appl. Phys. Lett. 90(18), 181127 (2007). [CrossRef]
  10. G. C. Dyer, J. P. Crossno, G. R. Aizin, E. A. Shaner, M. C. Wanke, J. L. Reno, and S. J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometer,” J. Phys. Condens. Matter 21(19), 195803 (2009). [CrossRef] [PubMed]
  11. J. Kawamura, C.-Y. E. Tong, R. Blundell, D. C. Papa, T. R. Hunter, F. Patt, G. Gol'tsman, and E. Gershenzon, “Terahertz-frequency waveguide NbN hot-electron bolometer mixer,” IEEE Trans. Appl. Supercond. 11(1), 952–954 (2001). [CrossRef]
  12. F. Rodriguez-Morales, K. S. Yngvesson, R. Zannoni, E. Gerecht, D. Gu, X. Zhao, N. Wadefalk, and J. J. Nicholson, “Development of integrated HEB/MMIC receivers for near-range terahertz imaging,” IEEE Trans. Microw. Theory Tech. 54(6), 2301–2311 (2006). [CrossRef]
  13. J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics,” Nat. Nanotechnol. 3(8), 496–500 (2008). [CrossRef] [PubMed]
  14. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403(6768), 405–407 (2000). [CrossRef] [PubMed]
  15. O. Astafiev, S. Komiyama, T. Kutsuwa, V. Antonov, Y. Kawaguchi, and K. Hirakawa, “Single-photon detector in the microwave range,” Appl. Phys. Lett. 80(22), 4250–4252 (2002). [CrossRef]
  16. H. Hashiba, V. Antonov, L. Kulik, S. Komiyama, and C. Stanley, “Highly sensitive detector for submillimeter wavelength range,” Appl. Phys. Lett. 85(24), 6036–6038 (2004). [CrossRef]
  17. J. W. Song, N. A. Kabir, Y. Kawano, K. Ishibashi, G. R. Aizin, L. Mourokh, J. L. Reno, A. G. Markelz, and J. P. Bird, “Terahertz response of quantum point contacts,” Appl. Phys. Lett. 92(22), 223115 (2008). [CrossRef]
  18. R. A. Wyss, C. C. Eugster, J. A. del Alamo, and Q. Hu, “Far-infrared photon-induced current in a quantum point contact,” Appl. Phys. Lett. 63(11), 1522–1524 (1993). [CrossRef]
  19. T. J. Janssen, J. C. Maan, J. Singleton, N. K. Patel, M. Pepper, J. E. Frost, D. A. Ritchie, and G. A. C. Jones, “A new mechanism for high-frequency rectification in a ballistic quantum point contact,” J. Phys. Condens. Matter 6(13), L163–L168 (1994). [CrossRef]
  20. C. Karadi, S. Jauhar, L. P. Kouwenhoven, K. Wald, J. Orenstein, P. L. McEuen, Y. Nagamune, and H. Sakaki, “Dynamic response of a quantum point contact,” J. Opt. Soc. Am. B 11(12), 2566–2571 (1994). [CrossRef]
  21. R. A. Wyss, C. C. Eugster, J. A. del Alamo, Q. Hu, M. J. Rooks, and M. R. Melloch, “Far-infrared radiation-induced thermopower in a quantum point contact,” Appl. Phys. Lett. 66(9), 1144–1146 (1995). [CrossRef]
  22. D. D. Arnone, J. E. F. Frost, C. G. Smith, D. A. Ritchie, G. A. C. Jones, R. J. Butcher, and M. Pepper, “Effect of terahertz irradiation on ballistic transport through one-dimensional quantum point contacts,” Appl. Phys. Lett. 66(23), 3149–3151 (1995). [CrossRef]
  23. Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2(10), 618–621 (2008). [CrossRef]
  24. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano-slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009). [CrossRef]
  25. M. Pioro-Ladrière, J. H. Davies, A. R. Long, A. S. Sachrajda, L. Gaudreau, P. Zawadzki, J. Lapointe, J. Gupta, Z. Wasilewski, and S. Studenikin, “Origin of switching noise in GaAs/AlxGa1−xAs lateral gated devices,” Phys. Rev. B 72(11), 115331 (2005). [CrossRef]
  26. L. P. Kouwenhoven, B. J. van Wees, C. J. P. M. Harmans, J. G. Williamson, H. van Houten, C. W. J. Beenakker, C. T. Foxon, and J. J. Harris, “Nonlinear conductance of quantum point contacts,” Phys. Rev. B 39(11), 8040–8043 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited