OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4679–4688

Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4679-4688 (2010)
http://dx.doi.org/10.1364/OE.18.004679


View Full Text Article

Enhanced HTML    Acrobat PDF (9416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication by a femtosecond laser of an optofluidic device for optical trapping and stretching of single cells. Versatility and three-dimensional capabilities of this fabrication technology provide straightforward and extremely accurate alignment between the optical and fluidic components. Optical trapping and stretching of single red blood cells are demonstrated, thus proving the effectiveness of the proposed device as a monolithic optical stretcher. Our results pave the way for a new class of optofluidic devices for single cell analysis, in which, taking advantage of the flexibility of femtosecond laser micromachining, it is possible to further integrate sensing and sorting functions.

© 2010 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: December 18, 2009
Revised Manuscript: January 21, 2010
Manuscript Accepted: January 22, 2010
Published: February 22, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Citation
N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, "Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells," Opt. Express 18, 4679-4688 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  2. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43(4), 241–258 (2002). [CrossRef]
  3. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007). [CrossRef]
  4. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88(5), 3689–3698 (2005). [CrossRef] [PubMed]
  5. Y.-L. Wang, and D. Discher, eds., Methods in Cell Biology, (Elsevier Academic Press, 2007) Vol. 83.
  6. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001). [CrossRef] [PubMed]
  7. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  8. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993). [CrossRef] [PubMed]
  9. B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9(5), 703–710 (2007). [CrossRef] [PubMed]
  10. F.-U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jäger, K. Uhlig, P. Geggier, and S. Howitz, “The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology,” Microfluid Nanofluid 2(1), 21–36 (2006). [CrossRef]
  11. S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, “Integrated monolithic optical manipulation,” Lab Chip 6(9), 1122–1124 (2006). [CrossRef] [PubMed]
  12. R. R. Gatass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  13. R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007). [CrossRef]
  14. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009). [CrossRef] [PubMed]
  15. M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009). [CrossRef]
  16. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006). [CrossRef] [PubMed]
  17. Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium with microfluidic structures for dynamic analysis of Cryptomonas and Phormidium fabricated by femtosecond laser direct writing of photostructurable glass,” Appl. Surf. Sci. 255(24), 9893–9897 (2009). [CrossRef]
  18. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009). [CrossRef] [PubMed]
  19. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001). [CrossRef]
  20. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004). [CrossRef] [PubMed]
  21. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88(19), 191107 (2006). [CrossRef]
  22. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17(10), 8685–8695 (2009). [CrossRef] [PubMed]
  23. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009). [CrossRef]
  24. Y. Sikorski, C. Rablau, M. Dugan, A. A. Said, P. Bado, and L. G. Beholz, “Fabrication and characterization of microstructures with optical quality surfaces in fused silica glass using femtosecond laser pulses and chemical etching,” Appl. Opt. 45(28), 7519–7523 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (738 KB)      QuickTime
» Media 2: AVI (782 KB)      QuickTime
» Media 3: AVI (745 KB)      QuickTime
» Media 4: AVI (1229 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited