OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4701–4708

Intra–cavity generation of Bessel–like beams with longitudinally dependent cone angles

Igor A. Litvin, Nikolai A. Khilo, Andrew Forbes, and Vladimir N. Belyi  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4701-4708 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on two resonator systems for producing Bessel–like beams with longitudinally dependent cone angles (LDBLBs). Such beams have extended propagation distances as compared to conventional Bessel–Gauss beams, with a far field pattern that is also Bessel–like in structure (i.e. not an annular ring). The first resonator system is based on a lens doublet with spherical aberration, while the second resonator system makes use of intra–cavity axicons and lens. In both cases we show that the LDBLB is the lowest loss fundamental mode of the cavity, and show theoretically the extended propagation distance expected from such beams.

© 2010 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 6, 2010
Revised Manuscript: February 4, 2010
Manuscript Accepted: February 4, 2010
Published: February 22, 2010

Igor A. Litvin, Nikolai A. Khilo, Andrew Forbes, and Vladimir N. Belyi, "Intra–cavity generation of Bessel–like beams with longitudinally dependent cone angles," Opt. Express 18, 4701-4708 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solutions for nondiffracting beams. The scalar theory,” J. Opt. Soc. Am. B 4(4), 651 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  3. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748–1754 (1989). [CrossRef] [PubMed]
  4. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932–942 (1991). [CrossRef]
  5. Z. Jaroszewicz, Axicons: Design and Propagation Properties, Vol. 5 of Research and Development Treatise (SPIE Polish Chapter, Warsaw, 1997).
  6. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based. Bessel resonator: Analytical description and experiment,” J. Opt. Soc. Am. A 18(8), 1986 (2001). [CrossRef]
  7. J. Rogel-Salazar, G. H. C. New, and S. Chavez-Cerda, “Bessel-Gauss beam optical resonator,” Opt. Commun. 190(1-6), 117–122 (2001). [CrossRef]
  8. I. A. Litvin and A. Forbes, “Bessel–Gauss Resonator with Internal Amplitude Filter,” Opt. Commun. 281(9), 2385–2392 (2008). [CrossRef]
  9. V. N. Belyi, N. S. Kasak, and N. A. Khilo, “Properties of parametric frequency conversion with Bessel light beams,” Opt. Commun. 162(1-3), 169–176 (1999). [CrossRef]
  10. N. A. Khilo, E. S. Petrova, and A. A. Ryzhevich, “Transformation of the order of Bessel beams in uniaxial crystals,” Quantum Electron. 31(1), 85–89 (2001). [CrossRef]
  11. V. N. Belyi, N. S. Kazak, and N. A. Khilo, “Frequency conversion of Bessel light beams in nonlinear crystals,” Quantum Electron. 30(9), 753–766 (2000). [CrossRef]
  12. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998). [CrossRef]
  13. I. A. Litvin, M. G. McLaren, and A. Forbes, “A conical wave approach to calculating Bessel-Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009). [CrossRef]
  14. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16(7), 523–525 (1991). [CrossRef] [PubMed]
  15. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15(9), 2383–2390 (1998). [CrossRef]
  16. C. Parigger, Y. Tang, D. H. Plemmons, and J. W. Lewis, “Spherical aberration effects in lens-axicon doublets: theoretical study,” Appl. Opt. 36(31), 8214–8221 (1997). [CrossRef]
  17. A. V. Goncharov, A. Burvall, and C. Dainty, “Systematic design of an anastigmatic lens axicon,” Appl. Opt. 46(24), 6076–6080 (2007). [CrossRef] [PubMed]
  18. T. Tanaka and S. Yamamoto, “Comparison of aberration between axicon and lens,” Opt. Commun. 184(1-4), 113–118 (2000). [CrossRef]
  19. P. A. Bélanger and C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16(14), 1057–1059 (1991). [CrossRef] [PubMed]
  20. C. Pare and P. A. Belanger, “Custom Laser Resonators Using Graded-Phase Mirror,” IEEE J. Quantum Electron. 28(1), 355–362 (1992). [CrossRef]
  21. P. A. Bélanger, R. L. Lachance, and C. Paré, “Super-Gaussian output from a CO(2) laser by using a graded-phase mirror resonator,” Opt. Lett. 17(10), 739–741 (1992). [CrossRef] [PubMed]
  22. I. A. Litvin and A. Forbes, “Intra-cavity flat-top beam generation,” Opt. Express 17(18), 15891–15903 (2009). [CrossRef] [PubMed]
  23. T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36(16), 3762–3768 (1997). [CrossRef] [PubMed]
  24. T. Aruga, S. W. Li, S. Y. Yoshikado, M. Takabe, and R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation,” Appl. Opt. 38(15), 3152–3156 (1999). [CrossRef]
  25. V. Belyi, A. Forbes, N. Kazak, N. Khilo, and P. Ropot, “Bessel–like beams with z–dependent cone angles,” Opt. Express 18(3), 1966–1973 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited