OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4727–4739

Modeling terahertz heating effects on water

Torben T. L. Kristensen, Withawat Withayachumnankul, Peter Uhd Jepsen, and Derek Abbott  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4727-4739 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We apply Kirchhoff’s heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused down to a spot with a diameter of 0.5 mm, we find that the steady-state temperature increase per milliwatt of transmitted power is 1.8°C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample temperature. For THz time domain systems, we indicate how to use our model as a worst-case approximation based on the beam average power. It turns out that THz pulses created from photoconductive antennas give a negligible increase in temperature. As biotissue contains a high water content, this leads to a discussion of worst-case predictions for THz heating of the human body in order to motivate future detailed study. An open source Matlab implementation of our model is freely available for use at www.eleceng.adelaide.edu.au/thz.

© 2010 Optical Society of America

OCIS Codes
(140.3360) Lasers and laser optics : Laser safety and eye protection
(260.3090) Physical optics : Infrared, far
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: January 12, 2010
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 9, 2010
Published: February 22, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Torben T. L. Kristensen, Withawat Withayachumnankul, Peter U. Jepsen, and Derek Abbott, "Modeling terahertz heating effects on water," Opt. Express 18, 4727-4739 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Appleby and H. B. Wallace, "Standoff detection of weapons and contraband in the 100 GHz to 1 THz region," IEEE Trans. Antennas Propag. 55,2944-2956 (2007). [CrossRef]
  2. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue," Phys. Med. Biol. 47,3853-3863 (2002). [CrossRef] [PubMed]
  3. D. Zimdars and J. S. White, "Terahertz reflection imaging for package and personnel inspection," Proc. SPIE Terahertz Appl. III 5411, 78-83 (2004).
  4. L. Thrane, R. H. Jacobsen, P. U. Jepsen, and S. R. Keiding, "THz reflection spectroscopy of liquid water," Chem. Phys. Lett. 240,330-333 (1995). [CrossRef]
  5. P. U. Jepsen, U. Moeller, and H. Merbold, "Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy," Opt. Express 15,14717-14737 (2007). [CrossRef] [PubMed]
  6. J. Balakrishnan, B. M. Fischer, and D. Abbott, "Fixed dual-thickness terahertz liquid spectroscopy using a spinning sample technique," IEEE Photon. J. 1,88-98 (2009). [CrossRef]
  7. J. T. Kindt and C. A. Schmuttenmaer, "Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy," J. Phys. Chem. 100,10373-10379 (1996). [CrossRef]
  8. J. R. Knab, J.-Y. Chen, Y. He, and A. G. Markelz, "Terahertz measurements of protein relaxational dynamics," Proc. IEEE 95,1605-1610 (2007). [CrossRef]
  9. A. Beneduci, "Which is the effective time scale of the fast Debye relaxation process in water?" J. Mol. Liq. 138, 55-60 (2008). [CrossRef]
  10. C. Worral, J. Alton, M. Houghton, S. Barbieri, H. E. Beere, D. Ritchie, and C. Sirtori, "Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz," Opt. Express 14,171-181 (2006). [CrossRef]
  11. Y.-S Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  12. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420,153-156 (2002). [CrossRef] [PubMed]
  13. M. Sherwin, "Terahertz power," Nature 420,131-132 (2002). [CrossRef] [PubMed]
  14. D. Abbott, B. Davis, B. Gonzalez, A. Hernandez, and K. Eshraghian, "Modelling of low power CW laser beam heating effects on a GaAs substrate," Solid-State Electron. 42,809-816 (1998). [CrossRef]
  15. F. Bonani and G. Ghione, "On the application of the Kirchhoff transformation to the steady-state thermal analysis of semiconductor devices with temperature-dependent and piecewise inhomogeneous thermal conductivity," Solid-State Electron. 38,1409-1412 (1995). [CrossRef]
  16. M. L. V. Ramires, C. A. Nieto de Castro, Y. Nagasaka, A. Nagashima, M. J. Assael, and W. A. Wakeham, "Standard reference data for the thermal conductivity of water," J. Phys. Chem. Ref. Data 24,1377-1381 (1995). [CrossRef]
  17. W. J. Ellison, "Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100◦C," J. Phys. Chem. Ref. Data 36,1-18 (2007). [CrossRef]
  18. J. K. Vij, D. R. J. Simpson, and O. E. Panarina, "Far infrared spectroscopy of water at different temperatures: GHz to THz dielectric spectroscopy of water," J. Mol. Liq. 112,125-135 (2004). [CrossRef]
  19. J. Xu, K. W. Plaxco, and S. J. Allen, "Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz," J. Chem. Phys. 124,1-3 (2006). [CrossRef]
  20. E. Berry, G. C. Walker, A. J. Fitzgerald, N. N. Zinov’ev, M. Chamberlain, S. W. Smye, R. E. Miles, and M. A. Smith, "Do in vivo terahertz imaging systems comply with safety guidelines?" J. Laser Appl. 15,192-198 (2003). [CrossRef]
  21. G. Woan, The Cambridge Handbook of Physics Formulas (Cambridge University Press, 2000). [CrossRef]
  22. R. R. Warner,M. C. Myers, and D. A. Taylor, "Electron probe analysis of human skin: Determination of the water concentration profile," J. Invest. Dermatol. 90,218-224 (1988). [CrossRef] [PubMed]
  23. B. M. Fischer, M. Walther, and P. U. Jepsen, "Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy," Phys. Med. Biol. 47,3807-3814 (2002). [CrossRef] [PubMed]
  24. S. P. Mickan, A, Menikh, H. B. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, and X. C. Zhang, "Labelfree bioaffinity detection using terahertz technology," Phys. Med. Biol. 47,3789-3795 (2002). [CrossRef] [PubMed]
  25. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, "Terahertz pulsed spectroscopy of freshly excised human breast cancer," Opt. Express 17, 12444-12454 (2009). [CrossRef] [PubMed]
  26. G. M. Png, J.W. Choi, B.W.-H. Ng, S. P. Mickan, D. Abbott, and X.-C. Zhang, "The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements," Phys. Med. Biol. 53, 3501-3517 (2008). [CrossRef] [PubMed]
  27. H. Fröhlich, "The biological effects of microwaves and related questions," Adv. Electron. El. Phys. 53,85-152 (1980). [CrossRef]
  28. W. Grundler and F. Kaiser, "Experimental evidence for coherent excitations correlated with cell growth," Nanobiology 1,163-176 (1992).
  29. R. W. Guynn and R. L. Veech, "The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate citrate lyase reactions," J. Biol. Chem. 248,6966-6972 (1973). [PubMed]
  30. B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and K. O. Rasmussen, "DNA breathing dynamics in the presence of a terahertz field," arXiv:0910.5294v1 (2009).
  31. N. P. Bondar, I. L. Kovalenko, D. F. Avgustinovich, A. G. Khamoyan, and N. N. Kudryavtseva, "Behavioral effect of terahertz waves in male mice," B. Exp. Biol. Med. 145,401-405 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited