OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4758–4775

Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy

Sara M. Landau, Chen Liang, Robert T. Kester, Tomasz S. Tkaczyk, and Michael R. Descour  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4758-4775 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (750 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An estimated 1.6 million breast biopsies are performed in the US each year. In order to provide real-time, in-vivo imaging with sub-cellular resolution for optical biopsies, we have designed an ultra-slim objective to fit inside the 1-mm-diameter hypodermic needles currently used for breast biopsies to image tissue stained by the fluorescent probe proflavine. To ensure high-quality imaging performance, experimental tests were performed to characterize fiber bundle’s light-coupling efficiency and simulations were performed to evaluate the impact of candidate lens materials’ autofluorescence. A prototype of NA = 0.4, 250-µm field of view, ultra-slim objective optics was built and tested, yielding diffraction-limited performance and estimated resolution of 0.9 µm. When used in conjunction with a commercial coherent fiber bundle to relay the image formed by the objective, the measured resolution was 2.5 µm.

© 2010 OSA

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(220.3620) Optical design and fabrication : Lens system design
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 19, 2009
Revised Manuscript: January 29, 2010
Manuscript Accepted: January 30, 2010
Published: February 23, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Sara M. Landau, Chen Liang, Robert T. Kester, Tomasz S. Tkaczyk, and Michael R. Descour, "Design and evaluation of an ultra-slim objective for in-vivo deep optical biopsy," Opt. Express 18, 4758-4775 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Silverstein, “Where’s the outrage?” J. Am. Coll. Surg. 208(1), 78–79 (2009). [CrossRef] [PubMed]
  2. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002). [CrossRef] [PubMed]
  3. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007). [CrossRef] [PubMed]
  4. W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009). [CrossRef] [PubMed]
  5. D. Toomre, and J. B. Pawley, “Disk-scanning confocal microscopy,” in Handbook of biological confocal microscopy, J. B. Pawley, ed., (Springer, New York, 2006), pp. 28, 985 p.
  6. R. Richards-Kortum, Department of Bioengineering, Rice University, MS 142, 6100 Main St., Houston, TX, 77005, USA (personal communication, 2010).
  7. PENTAX Medical Company, Montvale, NJ 07645, http://www.pentaxmedical.com/brochures/Confocal.pdf.
  8. Optiscan Pty. Ltd., Victoria, Australia, 3168 http://www.optiscan.com/Products/FIVE1_Brochure.pdf.
  9. R. T. Kester, T. S. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum, “High numerical aperture microendoscope objective for a fiber confocal reflectance microscope,” Opt. Express 15(5), 2409–2420 (2007). [CrossRef] [PubMed]
  10. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009). [CrossRef] [PubMed]
  11. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004). [CrossRef] [PubMed]
  12. P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008). [CrossRef] [PubMed]
  13. S. Georghiou, “Interaction of acridine drugs with DNA and nucleotides,” Photochem. Photobiol. 26(1), 59–68 (1977). [CrossRef] [PubMed]
  14. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993). [CrossRef] [PubMed]
  15. “Normal anatomy of the breast,” Yale University School of Medicine, http://www.med.yale.edu/intmed/cardio/imaging/anatomy/breast_anatomy/index.html.
  16. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, “Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy,” Appl. Opt. 45(11), 2545–2554 (2006). [CrossRef] [PubMed]
  17. ZEMAX Development Corporation, Bellevue, WA 98004–8017, http://www.zemax.com/.
  18. L. P. Zeon Chemicals, Louisville, KY 40211, http://www.zeonchemicals.com/
  19. R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, 1997).
  20. W. C. Sweatt, D. D. Gill, D. P. Adams, M. J. Vasile, and A. A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008). [CrossRef]
  21. R. T. Kester, T. Christenson, R. Richards-Kortum, and T. Tkaczyk, “High Performance Self Aligning Miniature Optical Systems for in vivo Diagnostics,” (Optical Society of America, 2008)
  22. B. Saleh, and M. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991).
  23. ISO 12233:2000(E), Photography - electronic still picture cameras - Resolution measurements (2000).
  24. A. P. Tzannes and J. M. Mooney, “Measurement of the modulation transfer-function of infrared cameras,” Opt. Eng. 34(6), 1808–1817 (1995). [CrossRef]
  25. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (John Wiley and Sons, 1978).
  26. E. Hecht, Optics, Fourth Edition (Addison Wesley, 2002).
  27. C. Liang, K.-B. Sung, R. R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41(22), 4603–4610 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited