OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4790–4795

Optofluidic notch filter integration by lift-off of thin films

Brian S. Phillips, Philip Measor, Yue Zhao, Holger Schmidt, and Aaron R. Hawkins  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4790-4795 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optofluidic platforms used for biomolecular detection require spectral filtering for distinguishing analyte signals from unwanted background. Towards a fully integrated platform, an on-chip filter is required. Selective deposition of dielectric thin films on an optofluidic sensor based on antiresonant reflecting optical waveguide (ARROW) technology provides the means for localized, on-chip optical filtering. We present a lift-off technique, compatible with thin-film processing including plasma-enhanced chemical vapor and sputtering deposition. The resulting optofluidic notch filters exhibited a 20 dB rejection with linewidths as low as 20 nm for ~1 cm long chips consisting of liquid-core and solid-core waveguides.

© 2010 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: December 14, 2009
Revised Manuscript: January 25, 2010
Manuscript Accepted: January 29, 2010
Published: February 23, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Brian S. Phillips, Philip Measor, Yue Zhao, Holger Schmidt, and Aaron R. Hawkins, "Optofluidic notch filter integration by 
lift-off of thin films," Opt. Express 18, 4790-4795 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007). [CrossRef] [PubMed]
  3. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  4. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986). [CrossRef]
  5. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008). [CrossRef] [PubMed]
  6. P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007). [CrossRef]
  7. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007). [CrossRef] [PubMed]
  8. S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009). [CrossRef] [PubMed]
  9. M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009). [CrossRef] [PubMed]
  10. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008). [CrossRef]
  11. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31(14), 2136–2138 (2006). [CrossRef] [PubMed]
  12. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005). [CrossRef]
  13. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef]
  14. P. Yeh, Optical waves in layered media (Wiley-Interscience, 1988).
  15. K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17(3), 594–596 (2005). [CrossRef]
  16. A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17(12), 2595–2597 (2005). [CrossRef]
  17. E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited