OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4796–4815

Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser

Jean-Jacques Zondy, Fabiola A. Camargo, Thomas Zanon, Valentin Petrov, and Niklaus U. Wetter  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4796-4815 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Self-starting self-pulsing dynamics at the cavity free-spectral-range frequency were observed in intracavity second-harmonic generation of a diode end-pumped Nd:YLF ring laser containing a periodically-poled KTiOPO4 (ppKTP) nonlinear crystal. Although the unidirectional laser was designed for continuous-wave (cw) single-frequency operation, with a resonator set at the middle of its stability range, partial Kerr-lens mode-locking (KLM) arose spontaneously once the ppKTP was inserted. This ultrafast dynamics along with a strong spectral gain broadening, not observed with any birefringent nonlinear doubler, is associated to the finite bandwidth of the quasi-phase-matched crystal with respect to the laser gain bandwidth, leading to giant cascaded Kerr-lensing effects when the ppKTP temperature is detuned from perfect quasi-phase-matching either in the self-focusing or defocusing sides. While under partial KLM operation the laser delivered only ~0.14W of broadband red output power, single-frequency operation could be only achieved by using an intracavity etalon with a suitable partial reflectivity (R≥25%), leading to an optimally (~100% efficiency) out-coupled 1.4W red power at 660.5nm, as much as the fundamental 1321nm power that could be extracted from the unidirectional laser using an optimal T = 2% output coupler.

© 2010 OSA

OCIS Codes
(140.3560) Lasers and laser optics : Lasers, ring
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.3100) Nonlinear optics : Instabilities and chaos
(190.3270) Nonlinear optics : Kerr effect
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Nonlinear Optics

Original Manuscript: December 17, 2009
Revised Manuscript: January 28, 2010
Manuscript Accepted: January 29, 2010
Published: February 23, 2010

Jean-Jacques Zondy, Fabiola A. Camargo, Thomas Zanon, Valentin Petrov, and Niklaus U. Wetter, "Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser," Opt. Express 18, 4796-4815 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ogilvy, M. J. Withford, P. Dekker, and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm,” Opt. Express 11(19), 2411–2415 (2003). [CrossRef] [PubMed]
  2. Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG Laser,” IEEE J. Quantum Electron. 35(11), 1737–1740 (1999). [CrossRef]
  3. A. Agnesi, A. Guandalini, G. Reali, S. Dell’Acqua, and G. Piccinno, “High-brightness 2.4-W continuous-wave Nd:GdVO4 laser at 670 nm,” Opt. Lett. 29(1), 56–58 (2004). [CrossRef] [PubMed]
  4. A.-Y. Yao, W. Hou, Y. Bi, A.-C. Geng, X.-C. Lin, Y.-P. Kong, D.-F. Cui, L.-A. Wu, and Z.-Y. Xu, “High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd:YVO4 laser,” Appl. Opt. 44(33), 7156–7160 (2005). [CrossRef] [PubMed]
  5. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008). [CrossRef]
  6. Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).
  7. R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J.-J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007). [CrossRef] [PubMed]
  8. R. Sarrouf, T. Badr, and J.-J. Zondy, “Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3μm Nd:YLiF4 lasers,” J. Opt. A, Pure Appl. Opt. 10(10), 104011 (2008). [CrossRef]
  9. F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, and J.-J. Zondy, “Tunable single-frequency Nd:YVO4 /BiB3O6 ring laser at 671nm,” IEEE J. Quantum Electron. (to be published).
  10. A. Agnesi, G. C. Reali, and P. G. Gobbi, “430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34(7), 1297–1300 (1998). [CrossRef]
  11. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser,” Opt. Lett. 21(12), 875–877 (1996). [CrossRef] [PubMed]
  12. Y. Zheng, H. Lu, F. Li, K. Zhang, and K. Peng, “Four watt long-term stable intracavity frequency-doubling Nd:YVO(4) laser of single-frequency operation pumped by a fiber-coupled laser diode,” Appl. Opt. 46(22), 5336–5339 (2007). [CrossRef] [PubMed]
  13. R. Polloni and O. Svelto, “Optimum coupling for intracavity second harmonic generation,” IEEE J. Quantum Electron. 4(9), 528–530 (1968). [CrossRef]
  14. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970). [CrossRef]
  15. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20(7), 746–748 (1995). [CrossRef] [PubMed]
  16. M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode-locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998). [CrossRef]
  17. K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988). [CrossRef]
  18. K. A. Stankov, “Mode locking by a frequency-doubling crystal: generation of transform-limited ultrashort light pulses,” Opt. Lett. 14(7), 359–361 (1989). [CrossRef] [PubMed]
  19. M. B. Danailov, G. Cerullo, V. Magni, D. Segala, and S. De Silvestri, “Nonlinear mirror mode locking of a cw Nd:YLF laser,” Opt. Lett. 19(11), 792–794 (1994). [CrossRef] [PubMed]
  20. Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4,” Appl. Phys. B 72, 395–397 (2001).
  21. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13(14), 5270–5278 (2005). [CrossRef] [PubMed]
  22. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992). [CrossRef] [PubMed]
  23. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18(1), 13–15 (1993). [CrossRef] [PubMed]
  24. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991). [CrossRef] [PubMed]
  25. T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17(18), 1292–1294 (1992). [CrossRef] [PubMed]
  26. G. P. A. Malcolm and A. I. Ferguson, “Self-mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 16(24), 1967–1969 (1991). [CrossRef] [PubMed]
  27. G. Cerullo, S. D. Silvestri, and V. Magni, “Self-starting Kerr-lens mode locking of a Ti:sapphire laser,” Opt. Lett. 19(14), 1040–1042 (1994). [CrossRef] [PubMed]
  28. J. R. Lincoln and A. I. Ferguson, “All-solid-state self-mode locking of a Nd:YLF laser,” Opt. Lett. 19(24), 2119–2121 (1994). [CrossRef] [PubMed]
  29. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993). [CrossRef] [PubMed]
  30. W. S. Pelouch, P. E. Powers, and C. L. Tang, “Self-starting mode-locked ring-cavity Ti:sapphire laser,” Opt. Lett. 17(22), 1581–1583 (1992). [CrossRef] [PubMed]
  31. A. Agnesi, “Kerr-lens modelocking of solid-state lasers and unidirectional cavities,” IEEE J. Quantum Electron. 30(4), 1115–1121 (1994). [CrossRef]
  32. D. R. Heatley, A. M. Dunlop, and W. J. Firth, “Kerr lens effects in a ring resonator with an aperture: mode locking and unidirectional operation,” Opt. Lett. 18(2), 170–172 (1993). [CrossRef] [PubMed]
  33. S. Greenstein and M. Rosenbluh, “The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation,” Opt. Commun. 248(1-3), 241–248 (2005). [CrossRef]
  34. S. Greenstein and M. Rosenbluh, “Dynamics of cw intra-cavity second-harmonic generation by PPKTP,” Opt. Commun. 238(4-6), 319–327 (2004). [CrossRef]
  35. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO(4) crystal,” Opt. Lett. 24(4), 205–207 (1999). [CrossRef]
  36. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3(9), 1175–1180 (1986). [CrossRef]
  37. A. Sennaroglu, “Broadly tunable continuous-wave orange-red source based on intracavity-doubled Cr4+:forsterite laser,” Appl. Opt. 41(21), 4356–4359 (2002). [CrossRef] [PubMed]
  38. R. Fluck, G. Zhang, U. Keller, K. J. Weingarten, and M. Moser, “Diode-pumped passively mode-locked 1.3-microm Nd:YVO(4) and Nd:YLF lasers by use of semiconductor saturable absorbers,” Opt. Lett. 21(17), 1378–1380 (1996). [CrossRef] [PubMed]
  39. H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, “Low-loss 1.3-µm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers,” Opt. Lett. 27(23), 2124–2126 (2002). [CrossRef]
  40. V. Liverini, S. Schön, R. Grange, M. Haiml, S. C. Zeller and U. Keller, “A low-loss GaInNAs SESAM mode-locking a 1.3-μm,” paper CThV7, CLEO 2004 Technical Digest (OSA).
  41. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-Transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999). [CrossRef]
  42. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk,” Appl. Phys. Lett. 74(7), 914–916 (1999). [CrossRef]
  43. J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second-harmonic generation with Gaussian beams,” Opt. Commun. 81(6), 427–440 (1991). [CrossRef]
  44. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Self-suppression of axial mode hopping by intracavity second-harmonic generation,” Opt. Lett. 22(6), 375–377 (1997). [CrossRef] [PubMed]
  45. P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008). [CrossRef]
  46. C. Sibilia, A. Re, E. Fazio, and M. Bertolotti, “Cascading effect on second-harmonic generation in a ring cavity,” J. Opt. Soc. Am. B 13(6), 1151–1159 (1996). [CrossRef]
  47. P.-A. Belanger and C. Pare, “Self-focusing of Gaussian beams: an alternate derivation,” Appl. Opt. 22(9), 1293–1295 (1983). [CrossRef] [PubMed]
  48. J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly-resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B 14(10), 2481–2497 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited