OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4829–4837

Beaming thermal emission from hot metallic bull’s eyes

S. E. Han and D. J. Norris  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4829-4837 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically examine thermal emission from metallic films with surfaces that are patterned with a series of circular concentric grooves (a bull’s eye pattern). Due to thermal excitation of surface plasmons, theory predicts that a single beam of light can be emitted from these films in the normal direction that is narrow, both in terms of its spectrum and its angular divergence. Thus, we show that metallic films can generate monochromatic directional beams of light by a simple thermal process.

© 2010 Optical Society of America

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(230.6080) Optical devices : Sources
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: January 4, 2010
Revised Manuscript: February 16, 2010
Manuscript Accepted: February 16, 2010
Published: February 23, 2010

S. E. Han and D. J. Norris, "Beaming thermal emission from hot metallic bull’s eyes," Opt. Express 18, 4829-4837 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. A. Polman, "Plasmonics applied," Science 322, 868-869 (2008). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcıa-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  7. L. Martın-Moreno, F. J. Garcıa-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  8. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunnelling microscopy," Nature 444, 740-743 (2006). [CrossRef] [PubMed]
  9. P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Organ pipe radiant modes of periodic micromachined silicon surfaces," Nature (London) 324, 549-551 (1986). [CrossRef]
  10. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).
  11. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature (London) 416, 61-64 (2002). [CrossRef] [PubMed]
  12. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, "Highly directional radiation generated by a tungsten thermal source," Opt. Lett. 30, 2623-2625 (2005). [CrossRef] [PubMed]
  13. Y. T. Chang, Y. H. Ye, D. C. Tzuang, Y. T. Wu, C. H. Yang, C. F. Chan, Y. W. Jiang, and S. C. Lee, "Localized surface plasmons in Al/Si structure and Ag/SiO2/Ag emitter with different concentric metal rings," Appl. Phys. Lett. 92, 233109 (2008). [CrossRef]
  14. C. M. Cornelius and J. P. Dowling, "Modification of Planck blackbody radiation by photonic band-gap structures," Phys. Rev. A 59, 4736-4746 (1999). [CrossRef]
  15. J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature (London) 417, 52-55 (2002). [CrossRef] [PubMed]
  16. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002). [CrossRef]
  17. I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72075127 (2005). [CrossRef]
  18. S. E. Han, A. Stein, and D. J. Norris, "Tailoring self-assembled metallic photonic crystals for modified thermal emission," Phys. Rev. Lett. 99, 053906 (2007). [CrossRef] [PubMed]
  19. X. D. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, "Filling fraction dependent properties of inverse opal metallic photonic crystals," Adv. Mater. 19, 1689-1692 (2007). [CrossRef]
  20. H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005). [CrossRef] [PubMed]
  21. E. Popov, M. Neviere, A.-L. Fehrembach, and N. Bonod, "Optimization of plasmon excitation at structured apertures," Appl. Opt. 44, 6141-6154 (2005). [CrossRef] [PubMed]
  22. S. E. Han, "Theory of thermal emission from periodic structures," Phys. Rev. B 80, 155108 (2009). [CrossRef]
  23. We used the transfer matrix formalism introduced in J. B. Pendry and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett. 69, 2772-2775 (1992). A unit cell is discretized by a 80×80 mesh. For◦C, we used the dielectric function for tungsten from D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, Orlando, 1985). [CrossRef] [PubMed]
  24. <jrn>24. F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, "Degree of polarization of thermal light emitted by gratings supporting surface waves," Opt. Express 16, 5305-5313 (2008).Q1</jrn> [CrossRef] [PubMed]
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).Q2
  26. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, "Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves," Phys. Rev. B 76, 045427 (2007). [CrossRef]
  27. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, "Highly coherent thermal emission obtained by plasmonic bandgap structures," Appl. Phys. Lett. 92, 081913 (2008). [CrossRef]
  28. T. Erdogan and D. G. Hall, "Circularly symmetric distributed feedback semiconductor laser: an analysis," J. Appl. Phys. 68, 1435-1444 (1990). [CrossRef]
  29. R. H. Jordan and D. G. Hall, "Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution," Opt. Lett. 19, 427-429 (1994). [CrossRef] [PubMed]
  30. J. Durnin, J. J. Miceli, Jr, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited