OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4838–4844

Focusing light into deep subwavelength using metamaterial immersion lenses

Changbao Ma and Zhaowei Liu  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4838-4844 (2010)
http://dx.doi.org/10.1364/OE.18.004838


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate metamaterial immersion lenses by shaping plasmonic metamaterials. The convex and concave shapes for the elliptically and hyperbolically dispersive metamaterials are designed using phase compensation method. Numerical simulations verify that the metamaterial immersion lenses possess exceptionally large effective numerical apertures thus can achieve deep subwavelength resolution focusing. We also discuss the importance of the losses in modulating the optical transfer function and thus in enhancing the performance of the metamaterial immersion lenses.

© 2010 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(350.5730) Other areas of optics : Resolution
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 27, 2010
Revised Manuscript: February 11, 2010
Manuscript Accepted: February 12, 2010
Published: February 23, 2010

Citation
Changbao Ma and Zhaowei Liu, "Focusing light into deep subwavelength using metamaterial immersion lenses," Opt. Express 18, 4838-4844 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873). [CrossRef]
  2. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  4. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007). [CrossRef] [PubMed]
  5. E. E. Narimanov, “Far-field superlens: Optical Nanoscope,” Nat. Photonics 1(5), 260–261 (2007). [CrossRef]
  6. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  7. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  8. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009). [CrossRef]
  9. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  10. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009). [CrossRef] [PubMed]
  11. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009). [CrossRef] [PubMed]
  12. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-Subwavelength Focusing and Steering of Light in an Aperiodic Metallic Waveguide Array,” Appl. Phys. Lett. 103(3), 033902–033904 (2009). [CrossRef]
  13. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990). [CrossRef]
  14. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72(22), 2779–2781 (1998). [CrossRef]
  15. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999). [CrossRef]
  16. M. Rothschild, T. M. Bloomstein, R. R. Kunz, V. Liberman, M. Switkes, S. T. Palmacci, J. H. C. Sedlacek, D. Hardy, and A. Grenville, “Liquid immersion lithography: Why, how, and when?” J. Vac. Sci. Technol. B 22(6), 2877–2881 (2004). [CrossRef]
  17. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994). [CrossRef]
  18. H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, “Thermally assisted recording beyond traditional limits,” Appl. Phys. Lett. 84(5), 810–812 (2004). [CrossRef]
  19. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999). [CrossRef]
  20. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001). [CrossRef]
  21. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  22. V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  23. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]
  24. G. Kino, “The solid immersion lens,” Proc. SPIE 3740, 2–6 (1999). [CrossRef]
  25. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  26. K. Iizuka, Elements of Photonics (John Wiley & Sons, New York, 2002), Vol. 1.
  27. J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.-Condens. Matter 10(22), 4785–4809 (1998). [CrossRef]
  28. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]
  29. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008). [CrossRef] [PubMed]
  30. H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, “Zone-plate-array lithography: A low-cost complement or competitor to scanning-electron-beam lithography,” Microelectron. Eng. 83(4-9), 956–961 (2006). [CrossRef]
  31. R. Völkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, “Microlens array imaging system for photolithography,” Opt. Eng. 35(11), 3323–3330 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited