OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4898–4919

Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm

Bernd Hofer, Boris Považay, Angelika Unterhuber, Ling Wang, Boris Hermann, Sara Rey, Gerald Matz, and Wolfgang Drexler  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4898-4919 (2010)
http://dx.doi.org/10.1364/OE.18.004898


View Full Text Article

Enhanced HTML    Acrobat PDF (10169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dispersion mismatch between sample and reference arm in frequency-domain optical coherence tomography (OCT) can be used to iteratively suppress complex conjugate artifacts and thereby increase the imaging range. In this paper, we propose a fast dispersion encoded full range (DEFR) algorithm that detects multiple signal components per iteration. The influence of different dispersion levels on the reconstruction quality is analyzed experimentally using a multilayered scattering phantom and in vivo retinal tomograms at 800 nm. Best results have been achieved with 30 mm SF11, with neglectable resolution decrease due to finite resolution of the spectrometer. Our fast DEFR algorithm achieves an average suppression ratio of 55 dB and typically converges within 5 to 10 iterations. The processing time on non-dedicated hardware was 5 to 10 seconds for tomograms with 512 depth scans and 4096 sampling points per depth scan. Application of DEFR to the more challenging 1060 nm wavelength region is also demonstrated by introducing an additional optical fibre in the sample arm.

© 2010 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3020) Image processing : Image reconstruction-restoration
(100.5070) Image processing : Phase retrieval
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Image Processing

History
Original Manuscript: January 5, 2010
Revised Manuscript: February 9, 2010
Manuscript Accepted: February 12, 2010
Published: February 24, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Bernd Hofer, Boris Považay, Angelika Unterhuber, Ling Wang, Boris Hermann, Sara Rey, Gerald Matz, and Wolfgang Drexler, "Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm," Opt. Express 18, 4898-4919 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-16-1415 [CrossRef]
  2. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2201 [CrossRef] [PubMed]
  3. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and W. Gorczynska, "Complex spectral OCT in human eye imaging in vivo," Opt. Commun. 229, 79-84 (2004). http://dx.doi.org/doi:10.1016/j.optcom.2003.10.041 [CrossRef]
  4. P. Targowski, W. Gorczynska, M. Szkulmowski, M. Wojtkowski, and A. Kowalczyk, "Improved complex spectral domain OCT for in vivo eye imaging," Opt. Commun. 249, 357-362 (2005). http://dx.doi.org/doi:10.1016/j.optcom.2005.01.016 [CrossRef]
  5. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-2-147 [CrossRef] [PubMed]
  6. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 [CrossRef] [PubMed]
  7. M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers," Opt. Lett. 28, 2162-2164 (2003). http://ol.osa.org/abstract.cfm?URI=ol-28-22-2162 [CrossRef] [PubMed]
  8. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-957 [CrossRef] [PubMed]
  9. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-16-2426 [CrossRef] [PubMed]
  10. S. Yun, G. Tearney, J. de Boer, and B. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-20-4822 [CrossRef] [PubMed]
  11. A. M. Davis, M. A. Choma, and J. A. Izatt, "Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal," J. Biomed. Opt. 10, 064005 (2005). http://link.aip.org/link/?JBO/10/064005/1 [CrossRef]
  12. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1487 [CrossRef] [PubMed]
  13. A. H. Bachmann, R. Michaely, T. Lasser, and R. A. Leitgeb, "Dual beam heterodyne Fourier domain optical coherence tomography," Opt. Express 15, 9254-9266 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-15-9254 [CrossRef] [PubMed]
  14. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-362 [CrossRef] [PubMed]
  15. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006). http://ao.osa.org/abstract.cfm?URI=ao-45-8-1861 [CrossRef] [PubMed]
  16. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007). http://link.aip.org/link/?APL/90/054103/1 [CrossRef]
  17. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453-3455 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-23-3453 [CrossRef] [PubMed]
  18. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-13387 (2007). http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13375 [CrossRef] [PubMed]
  19. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32, 2918-2920 (2007). http://ol.osa.org/abstract.cfm?URI=ol-32-20-2918 [CrossRef] [PubMed]
  20. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406 [CrossRef] [PubMed]
  21. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 17, 14281-14297 (2009). http://www.opticsexpress.org/abstract.cfm?URI=oe-17-16-14281 [CrossRef] [PubMed]
  22. K. Wang, Z. Ding, Y. Zeng, J. Meng, and M. Chen, "Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact," Opt. Express 17, 16820-16833 (2009). http://www.opticsexpress.org/abstract.cfm?URI=oe-17-19-16820
  23. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 [CrossRef] [PubMed]
  24. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42, 3038-3046 (2003). http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3038 [CrossRef] [PubMed]
  25. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 [CrossRef] [PubMed]
  26. K. E. OHara and M.  Hacker, "Method to suppress artifacts in frequency-domain optical coherence tomography," US7330270 (2008).
  27. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009). http://www.opticsexpress.org/abstract.cfm?URI=oe-17-1-7 [CrossRef] [PubMed]
  28. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," in Proc. SPIE, J. G. Fujimoto, J. A. Izatt, and V. V. Tuchin, eds., 7168, 71 681I (2009). http://link.aip.org/link/?PSI/7168/71681I/1
  29. S. Witte, M. Baclayon, E. J. Peterman, R. F. Toonen, H. D. Mansvelder, and M. L. Groot, "Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control," Opt. Express 17, 11335-11349 (2009). http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11335 [CrossRef]
  30. B. Hermann, B. Hofer, C. Meier, and W. Drexler, "Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non- scattering phantoms," Opt. Express 17, 24162-24174 (2009). http://www.opticsexpress.org/abstract.cfm?URI=oe-17-26-24162 [CrossRef]
  31. M. Duarte, M. Davenport, M. Wakin, and R. Baraniuk, "Sparse Signal Detection from Incoherent Projections," in Proceedings International Conference on Acoustics, Speech and Signal Processing (ICASSP)3, III305-308 (2006). http://dx.doi.org/doi:10.1109/ICASSP.2006.1660651
  32. B. Považay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009). http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4134 [CrossRef] [PubMed]
  33. B. Považay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009). http://www.iovs.org/cgi/content/abstract/50/4/1856 [CrossRef]
  34. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, "Signal post processing in frequency domain OCT and OCM using a filter bank approach," 6443, 64 430O (2007). http://link.aip.org/link/?PSI/6443/64430O/1

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (875 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited