OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4920–4930

Perpendicular oriented single-pole nano-optical transducer

Kürşat Şendur  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4920-4930 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nano-optical transducers have been utilized in existing an emerging applications due to their ability to obtain small optical spots, large transmission efficiency, and narrow and adjustable spectral response. In emerging nano-optical applications, such as heat assisted magnetic recording (HAMR), these features are not sufficient. For example, in HAMR a transducer should also satisfy additional requirements, such as mass-production and integrability with other device components. In this study, the basic principles of Maxwell’s equations and image theory for good metals are utilized to design a perpendicular oriented single-pole nano-optical transducer, which can be integrated into the manufacturing technologies of current hard disk drive heads. The perpendicular oriented single-pole nano-optical transducer is investigated using 3-D finite element methods Gold transducers are investigated for both longitudinal and perpendicular orientations. The optical intensity profiles and spot sizes of longitudinal and perpendicular oriented transducers are compared for various fly heights. It is shown that a perpendicular ridge waveguide provides localized optical spots with intensities comparable to longitudinal transducers.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: January 4, 2010
Manuscript Accepted: January 26, 2010
Published: February 24, 2010

Kürşat Şendur, "Perpendicular oriented single-pole nano-optical transducer," Opt. Express 18, 4920-4930 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld, Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M. Seigler, D. Weller, and X. Yang, "Heat-assisted magnetic recording," IEEE Trans. Mag. 42,2417-2421 (2006). [CrossRef]
  2. P. L. Lu and S. H. Charap, "Magnetic viscosity in high-density recording," J. Appl. Phys. 75,5768-5770 (1994). [CrossRef]
  3. D. Weller and A. Moser, "Thermal effect limits in ultrahigh density magnetic recording," IEEE Trans. Magn. 35,4423-4439 (1999). [CrossRef]
  4. S. I. Iwasaki and J. Hokkyo, Perpendicular Magnetic Recording (IOS, Amsterdam, 1991).
  5. M. Mallary, A. Torabi, and M. Benakli, "One terabit per square inch perpendicular recording conceptual design," IEEE Trans. Magn. 38,1719-1724 (2002). [CrossRef]
  6. R. Wood, "Feasibility of Magnetic Recording at 1 Terabit per Square Inch," IEEE Trans. Magn. 36,36-42 (2000). [CrossRef]
  7. T. W. McDaniel, W. A. Challener, and K. Sendur, "Issues in heat-assisted perpendicular recording," IEEE Trans. Magn. 39,1972-1979 (2003). [CrossRef]
  8. M. H. Kryder, E. C. Gage, T.W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, "Heat Assisted Magnetic Recording," Proc. IEEE 96,1810-1835 (2008). [CrossRef]
  9. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nature Photon. 3,220-224 (2009). [CrossRef]
  10. L. Pan and D. B. Bogy, "Heat Assisted Magnetic Recording," Nature Photon. 3,189-190 (2009). [CrossRef]
  11. K. Sendur, C. Peng, and W. Challener, "Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94,043901 (2005). [CrossRef] [PubMed]
  12. W. Challener, E. Gage, A. Itagi, and C. Peng, "Optical transducers for near-field recording," Jpn. J. Appl. Phys. 94,6632-6642 (2006). [CrossRef]
  13. K. Sendur and W. Challener, "Patterned medium for heat assisted magnetic recording," Appl. Phys. Lett. 94,032503 (2009). [CrossRef]
  14. X. Shi, R. Thornton, and L. Hesselink, "Nano-aperture with 1000x power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE Int. Soc. Opt. Eng. 4342, 320 (2002).
  15. X. Shi and L. Hesselink, "Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage," Jpn. J. Appl. Phys. 41,1632-1635 (2002). [CrossRef]
  16. A. V. Itagi, D. Stancil, J. Bain, and T. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83,4474-4476 (2003). [CrossRef]
  17. K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near-field aperture for high density data storage," J. Appl. Phys. 96,2743-2752 (2004). [CrossRef]
  18. K. Sendur and P. Jones, "Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers," Appl. Phys. Lett. 88,091110 (2006). [CrossRef]
  19. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).
  20. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, NY, 1990).
  21. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  22. L. Novotny and B. Hecht, Principles of Nano-Optics, Chapter 3 (Cambridge University Press, New York, NY, 2006)
  23. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91,233901 (2003). [CrossRef] [PubMed]
  24. M. J. Snadden, A. S. Bell, R. B. M. Clarke, E. Riis, and D. H. McIntyre, "Doughnut mode magneto-optical trap," J. Opt. Soc. Am. B 14, 544-552 (1997). [CrossRef]
  25. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990). [CrossRef] [PubMed]
  26. W. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature Planar Solid Immersion Mirror with Focused Spot Less Than a Quarter Wavelength," Opt. Express 13, 7189-7197 (2005). [CrossRef] [PubMed]
  27. A. Hartschuh, N. Anderson, and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210234-240 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited