OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4931–4938

Optical performance monitoring of QPSK data channels by use of neural networks trained with parameters derived from asynchronous constellation diagrams

Jeffrey A. Jargon, Xiaoxia Wu, Hyeon Yeong Choi, Yun C. Chung, and Alan E. Willner  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 4931-4938 (2010)
http://dx.doi.org/10.1364/OE.18.004931


View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a technique for performance monitoring of quadrature phase-shift keying data channels by simultaneously identifying optical signal-to-noise ratio (OSNR), chromatic dispersion (CD), and polarization-mode dispersion (PMD) using neural networks trained with parameters derived from asynchronous constellation diagrams. A correlation coefficient of 0.987 is reported for a set of testing data from a 40 Gbps return-to-zero, quadrature phase-shift keying (RZ-QPSK) system. The root-mean-square (RMS) errors are 0.77 dB for OSNR, 18.71 ps/nm for CD, and 1.17 ps for DGD.

© 2010 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(100.4996) Image processing : Pattern recognition, neural networks

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 7, 2010
Revised Manuscript: January 27, 2010
Manuscript Accepted: February 15, 2010
Published: February 24, 2010

Citation
Jeffrey A. Jargon, Xiaoxia Wu, Hyeon Yeong Choi, Yun C. Chung, and Alan E. Willner, "Optical performance monitoring of QPSK data channels by use of neural networks trained with parameters derived from asynchronous constellation diagrams," Opt. Express 18, 4931-4938 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4931


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Olstar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004). [CrossRef]
  2. I. Shake, H. Takara, S. Kawanishi, and Y. Yamabayashi, “Optical Signal Quality Monitoring Method Based on Optical Sampling,” Electron. Lett. 34(22), 2152–2154 (1998). [CrossRef]
  3. N. Hanik, A. Gladisch, C. Caspar, and B. Strebel, “Application of Amplitude Histograms to Monitor Performance of Optical Channels,” Electron. Lett. 35(5), 403–404 (1999). [CrossRef]
  4. S. Ohteru and N. Takachio, “Optical Signal Quality Monitor Using Direct Q-Factor Measurement,” IEEE Photon. Technol. Lett. 11(10), 1307–1309 (1999). [CrossRef]
  5. S. D. Dods and T. B. Anderson, “Optical Performance Monitoring Technique Using Delay Tap Asynchronous Waveform Sampling,” OFC/NFOEC Technical Digest, 2006, paper OThP5.
  6. B. Kozicki, A. Maruta, and K. Kitayama, “Asynchronous Optical Performance Monitoring of RZ-DQPSK Signals Using Delay-Tap Sampling,” ECOC Conference Proceedings, 2007, paper P060.
  7. J. A. Jargon, X. Wu, and A. E. Willner, “Optical Performance Monitoring by Use of Artificial Neural Networks Trained with Parameters Derived from Delay-Tap Asynchronous Sampling,” OFC/NFOEC Technical Digest, 2009, paper OThH1.
  8. H. Y. Choi, Y. Takushima, and Y. C. Chung, “Multiple-Impairment Monitoring Technique Using Optical Field Detection and Asynchronous Delay-Tap Sampling Method,” OFC/NFOEC Technical Digest, 2009, paper OThJ5.
  9. T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and J. C. Li, “Multi Impairment Monitoring for Optical Networks,” J. Lightwave Technol. 27(16), 3729–3736 (2009). [CrossRef]
  10. R. A. Skoog, T. Banwell, J. Gannett, S. Habiby, M. Pang, M. Rauch, and P. Toliver, “Automatic Identification of Impairments Using Support Vector Machine Pattern Classification on Eye Diagrams,” IEEE Photon. Technol. Lett. 18(22), 2398–2400 (2006). [CrossRef]
  11. J. A. Jargon, X. Wu, and A. E. Willner, “Optical Performance Monitoring Using Artificial Neural Networks Trained with Eye-Diagram Parameters,” IEEE Photon. Technol. Lett. 21(1), 54–56 (2009). [CrossRef]
  12. X. Wu, J. A. Jargon, R. A. Skoog, L. Paraschis, and A. E. Willner, “Applications of Artificial Neural Networks in Optical Performance Monitoring,” J. Lightwave Technol. 27(16), 3580–3589 (2009). [CrossRef]
  13. P. J. Winzer and R. Essiambre, “Advanced Optical Modulation Formats,” Proc. IEEE 94(5), 952–985 (2006). [CrossRef]
  14. V. Arbab, X. Wu, A. E. Willner, and C. Weber, “Optical Performance Monitoring of Data Degradation by Evaluating the Deformation of an Asynchronously Generated I/Q Data Constellation,” European Conference on Optical Communications (ECOC) 2009, paper P3.23.
  15. M. H. Hassoun, Fundamentals of Artificial Neural Networks (The MIT Press, 1995).
  16. K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks Are Universal Approximators,” Neural Netw. 2(5), 359–366 (1989). [CrossRef]
  17. “NeuroModeler, ver. 1.5,” Q. J. Zhang and His Neural Network Research Team, Department of Electronics, Carleton University, Ottawa, Canada, 2004.
  18. D. Dahan, D. Levy, and U. Mahlab, “Low Cost Multi-Impairment Monitoring Technique for 43 Gbps DPSK and 86 Gbps DP-DPSK Using Delay Tap Asynchronous Sampling Method,” European Conference on Optical Communications (ECOC) 2009, paper P3.01.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited