OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5000–5007

Metamaterial based telemetric strain sensing in different materials

Rohat Melik, Emre Unal, Nihan Kosku Perkgoz, Christian Puttlitz, and Hilmi Volkan Demir  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 5000-5007 (2010)
http://dx.doi.org/10.1364/OE.18.005000


View Full Text Article

Enhanced HTML    Acrobat PDF (405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present telemetric sensing of surface strains on different industrial materials using split-ring-resonator based metamaterials. For wireless strain sensing, we utilize metamaterial array architectures for high sensitivity and low nonlinearity-errors in strain sensing. In this work, telemetric strain measurements in three test materials of cast polyamide, derlin and polyamide are performed by observing operating frequency shift under mechanical deformation and these data are compared with commercially-available wired strain gauges. We demonstrate that hard material (cast polyamide) showed low slope in frequency shift vs. applied load (corresponding to high Young's modulus), while soft material (polyamide) exhibited high slope (low Young's modulus).

© 2010 OSA

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 4, 2010
Revised Manuscript: February 14, 2010
Manuscript Accepted: February 14, 2010
Published: February 25, 2010

Citation
Rohat Melik, Emre Unal, Nihan Kosku Perkgoz, Christian Puttlitz, and Hilmi Volkan Demir, "Metamaterial based telemetric strain sensing in different materials," Opt. Express 18, 5000-5007 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ghali, and R. Favre, Concrete Structures: Stresses and Deformations (E & FN Spon, London, 1994).
  2. R. Melik, N. K. Perkgoz, E. Unal, C. Puttlitz, and H. V. Demir, “Bioimplantable passive on-chip RF-MEMS strain sensing resonators for orthopeadic applications,” J. Micromech. Microeng. 18(11), 115017 (2008). [CrossRef]
  3. R. Melik, E. Unal, C. Puttlitz, and H. V. Demir, “Metamaterial-based wireless strain sensors,” Appl. Phys. Lett. 95(1), 011106 (2009). [CrossRef]
  4. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007). [CrossRef] [PubMed]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  6. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005). [CrossRef] [PubMed]
  7. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  8. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003). [CrossRef] [PubMed]
  9. J. D. Wilson and Z. D. Schwartz, “Multifocal flat lens with left-handed metamaterial,” Appl. Phys. Lett. 86(2), 021113 (2005). [CrossRef]
  10. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  11. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008). [CrossRef] [PubMed]
  12. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006). [CrossRef] [PubMed]
  13. http://www.mathweb.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited