OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5008–5014

Measurement of the coupling constant in a two-frequency VECSEL

V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 5008-5014 (2010)
http://dx.doi.org/10.1364/OE.18.005008


View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measure the coupling constant between the two perpendicularly polarized eigenstates of a two-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). This measurement is performed for different values of the transverse spatial separation between the two perpendicularly polarized modes. The consequences of these measurements on the two-frequency operation of such class-A semiconductor lasers are discussed.

© 2010 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 8, 2010
Revised Manuscript: February 19, 2010
Manuscript Accepted: February 24, 2010
Published: February 25, 2010

Citation
V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, "Measurement of the coupling constant in a two-frequency VECSEL," Opt. Express 18, 5008-5014 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5008


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, "Dualfrequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals," J. Lightwave Technol. 26, 2764-2773 (2008). [CrossRef]
  2. R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, "THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous-wave THz generation through photomixing," Electron. Lett. 40, 942-943 (2004). [CrossRef]
  3. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, "Building blocks for a two-frequency laser lidar-radar: a preliminary study," Appl. Opt. 41, 5702-5712 (2002). [CrossRef] [PubMed]
  4. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scales in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992). [CrossRef] [PubMed]
  5. M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 μm," Opt. Lett. 30, 2418-2420 (2005). [CrossRef] [PubMed]
  6. M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, "High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop," IEEE Photon. Technol. Lett. 16, 870-872 (2004). [CrossRef]
  7. L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, "Dualfrequency laser at 1.53 μm for generating high-purity optically carried microwave signals up to 20 GHz," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuL5. [PubMed]
  8. G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, "Shot-noise limited operation of a monomode high cavity finesse semiconductor laser for microwave photonics applications," Opt. Lett. 32, 650-652 (2007). [CrossRef] [PubMed]
  9. G. Baili, F. Bretenaker,M. Alouini, D. Dolfi, and I. Sagnes, "Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers," J. Lightwave Technol. 26, 952-961 (2008). [CrossRef]
  10. G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, "Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation-oscillations," Opt. Lett. 34, 3421-3423 (2009). [CrossRef] [PubMed]
  11. M. SargentIII, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, 1974).
  12. M. M.-Tehrani and L. Mandel, "Coherence theory of the ring laser," Phys. Rev. A 17, 677-693 (1978). [CrossRef]
  13. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, "High power single-frequency continuouslytunable compact extended-cavity semiconductor laser," Opt. Express 17, 9503-9508 (2009). [CrossRef]
  14. A. E. Siegman, Lasers (University Science Books, 1986), pp. 992-999.
  15. M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, "Differential measurement of the coupling constant between laser eigenstates," Appl. Phys. Lett. 70, 2070-2072 (1997). [CrossRef]
  16. M. Alouini, F. Bretenaker,M. Brunel, A. Le Floch,M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000). [CrossRef]
  17. A. McKay, J. M. Dawes, and J.-D. Park, "Polarisation-mode coupling in (100)-cut Nd:YAG," Opt. Express 15, 16342-16347 (2007). [CrossRef]
  18. S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J.-P. Pocholle, "Orientation of Nd3+ dipoles in yttrium aluminum garnet: Experiment and model," Phys. Rev. A 79, 063814 (2009). [CrossRef]
  19. J. Talghader and J. S. Smith, "Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities," Appl. Phys. Lett. 66, 335-337 (1995). [CrossRef]
  20. M. San Miguel, Q. Feng, and J. V. Moloney, "Light-polarization dynamics in surface-emitting semiconductor lasers," Phys. Rev. A 52, 1728-1739 (1995). [CrossRef] [PubMed]
  21. M. P. van Exter, R. F. M. Hendriks, and J. P. Woerdman, "Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers," Phys. Rev. A 57, 2080-2090 (1998). [CrossRef]
  22. D. Burak, J. V. Moloney, and R. Binder, "Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," Phys. Rev. A 61, 053809 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited