OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5061–5067

Electro-optic coupling of wide wavelength range in linear chirped-periodically poled lithium niobate and its applications

Xiao-qi Zeng, Li-xiang Chen, Hai-bo Tang, Bing-zhi Zhang, Dong-zhou Zhong, and Wei-long She  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5061-5067 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate the electro-optic coupling in an optical superlattice of linear chirped-periodically poled lithium niobate. It is found that the electro-optic coupling in such optical superlattice can work in a wide wavelength range. Some of examples, with bandwidths of 20, 40, 80, 120nm, are demonstrated. The way to determine the electric field for perfect conversion between o- and e-ray and the method using apodized crystals of tanh profile to reduce the ripples are shown. As one of its applications, one kind of broadband Solc-type bandpass filter in optical communication range is proposed.

© 2010 OSA

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(190.0190) Nonlinear optics : Nonlinear optics
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: January 25, 2010
Revised Manuscript: January 26, 2010
Manuscript Accepted: February 18, 2010
Published: February 25, 2010

Xiao-qi Zeng, Li-xiang Chen, Hai-bo Tang, Bing-zhi Zhang, Dong-zhou Zhong, and Wei-long She, "Electro-optic coupling of wide wavelength range in linear chirped-periodically poled lithium niobate and its applications," Opt. Express 18, 5061-5067 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Y. Zhu and N. B. Ming, “Dielectric super-lattices for nonlinear optical effects,” Opt. Quantum Electron. 31(11), 1093–1128 (1999). [CrossRef]
  2. K. L. Baker, “Single-pass gain in a chirped quasi-phase-matched optical parametric oscillator,” Appl. Phys. Lett. 82(22), 3841–3843 (2003). [CrossRef]
  3. L. Arizmendi, “Photonic applications of Lithium Niobate,” Phys. Status Solidi A 201(2), 253–283 (2004). [CrossRef]
  4. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000). [CrossRef]
  5. C. S. Kee, Y. L. Lee, and J. Lee, “Electro- and thermo-optic effects on multi-wavelength Šolc filters based on x(2) nonlinear quasi-periodic photonic crystals,” Opt. Express 16(9), 6098–6103 (2008). [CrossRef] [PubMed]
  6. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28(21), 2115–2117 (2003). [CrossRef] [PubMed]
  7. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28(16), 1460–1462 (2003). [CrossRef] [PubMed]
  8. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett. 30(6), 634–636 (2005). [CrossRef] [PubMed]
  9. M. B. Nasr, S. Carrasco, B. E. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008). [CrossRef] [PubMed]
  10. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78(6), 063821 (2008). [CrossRef]
  11. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009). [CrossRef] [PubMed]
  12. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003), Chap. 17.
  13. C. H. von Helmolt, “Broadband single-mode TE/TM convertors in LiNbO3: a novel design,” Electron. Lett. 22(3), 155–156 (1986). [CrossRef]
  14. O. Eknoyan, W. K. Burns, R. P. Moeller, and N. J. Frigo, “Broadband LiTaO3 guided-wave TE-TM mode converter,” Appl. Opt. 27(1), 114–117 (1988). [CrossRef] [PubMed]
  15. W. L. She and W. K. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195(1-4), 303–311 (2001). [CrossRef]
  16. G. Zheng, H. Wang, and W. She, “Wave coupling theory of Quasi-Phase-Matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006). [CrossRef] [PubMed]
  17. L. D. Landau, “Zur Theorie der Energieubertragung. II,” Phys. Soviet Union 2, 46–51 (1932).
  18. C. Zener, “Non-adiabatic Crossing of Energy Levels,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 137(833), 696–702 (1932). [CrossRef]
  19. M. V. Hobden and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22(3), 243–244 (1966). [CrossRef]
  20. Optoplex support, “DWDM ITU Grid Specification,” (Optoplex corporation,2010), http://www.optoplex.com/PDF/DWDM-ITU.pdf .
  21. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasiphase-matched interactions,” Opt. Lett. 31(5), 604–606 (2006). [CrossRef] [PubMed]
  22. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32(9), 1129–1131 (2007). [CrossRef] [PubMed]
  23. Y. L. Lee, Y. C. Noh, C. S. Kee, N. E. Yu, W. Shin, C. Jung, D. K. Ko, and J. Lee, “Bandwidth control of a Ti:PPLN Solc filter by a temperature-gradient-control technique,” Opt. Express 16(18), 13699–13706 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited