OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5075–5088

Universal Michelson Gires-Tournois interferometer optical interleaver based on digital signal processing

Juan Zhang and Xiaowei Yang  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 5075-5088 (2010)
http://dx.doi.org/10.1364/OE.18.005075


View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical interleavers based on Michelson Gires-Tournois interferometer (MGTI) with arbitrary cascaded reflectors for symmetrical or asymmetrical periodic frequency response with arbitrary duty cycles are defined as universal MGTI optical interleaver (UMGTIOI). It can significantly enhance flexibility and applicability of optical networks. A novel and simple method based on digital signal processing is proposed for the design of UMGTIOI. Different kinds of design examples are given to confirm effectiveness of the method.

© 2010 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 25, 2009
Revised Manuscript: January 19, 2010
Manuscript Accepted: February 1, 2010
Published: February 25, 2010

Citation
Juan Zhang and Xiaowei Yang, "Universal Michelson Gires-Tournois interferometer optical interleaver based on digital signal processing," Opt. Express 18, 5075-5088 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5075


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-W. Lee, R. Wang, P. Yeh, C. H. Hsieh, and W. H. Cheng, “Birefringent interleaver with a ring cavity as a phase-dispersion element,” Opt. Lett. 30(10), 1102–1104 (2005). [CrossRef] [PubMed]
  2. A. Zeng and J. Chon, “Ultra-high capacity and high speed DWDM optical devices for telecom and datacom applications,” Proc. SPIE 4581, 13–20 (2001). [CrossRef]
  3. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008). [CrossRef] [PubMed]
  4. Q. J. Wang, Y. Zhang, and Y. C. Soh, “Design of linear-phase two-port optical interleavers using lattice architectures,” Opt. Lett. 31(16), 2411–2413 (2006). [CrossRef] [PubMed]
  5. S. Cao, J. Chen, et al., “Interleaver Technology: Comparisons and Applications Requirements,” OFC’03, Interleaver Workshop Review Paper, 1–9.
  6. K. Jinguji and T. Yasui, “Synthesis of One-Input M-Output Optical FIR Lattice Circuits,” J. Lightwave Technol. 26(7), 853–866 (2008). [CrossRef]
  7. M. Oguma, K. Jinguji, T. Kitoh, T. Shibata, and A. Himeno, “Flat-passband interleaver filter with 200GHz channel spacing based on planar lightwave circuit-type lattice structure,” Electron. Lett. 36(15), 1299–1300 (2000). [CrossRef]
  8. J. Zhang, L. Liu, and Y. Zhou, “A tunable interleaver filter based on analog birefringent units,” Opt. Commun. 227(4-6), 283–294 (2003). [CrossRef]
  9. Chao-Hsing Hsieh, Ruibo Wang, I. McMichael, Pochi Yeh, Chao-Wei Lee, Wood-Hi Cheng, and Zhiqing James Wen, “Flat-top interleavers using two Gires-Tournois etalons as phase-dispersion mirrors in a Michelson interferometer,” IEEE Photon. Technol. Lett. 15(2), 242–244 (2003). [CrossRef]
  10. J. Zhang, L. Liu, and Y. Zhou, “Novel and simple approach for designing lattice-form interleaver filter,” Opt. Express 11(18), 2217–2224 (2003). [CrossRef] [PubMed]
  11. C.-W. Lee, R. Wang, P. Yeh, and W. H. Cheng, “Sagnac interferometer based flat-top birefringent interleaver,” Opt. Express 14(11), 4636–4643 (2006). [CrossRef] [PubMed]
  12. J. Zhang and L. Liu, “A novel Mach-Zehnder interferometer structure for tunable optical interleaver,” Opt. Eng. 45(4), 045003 (2006). [CrossRef]
  13. Q. J. Wang, Y. Zhang, and Y. C. Soh, “Flat-passband 3×3 interleaving filter designed with optical directional couplers in lattice structure,” J. Lightwave Technol. 23(12), 4349–4362 (2005). [CrossRef]
  14. B. Dingel and A. Dutta, ““Photonic add-drop multiplexing perspective for next generation optical networks” (invited paper),” Proc. SPIE 4532, 394–408 (2001). [CrossRef]
  15. T. Mizuno, M. Oguma, T. Kitoh, Y. Inoue, and H. Takahashi, “Lattice-form CWDM interleave filter using silica-based planar lightwave circuit,” IEEE Photon. Technol. Lett. 18(15), 1570–1572 (2006). [CrossRef]
  16. A. H. Gnauck, P. J. Winzer, and S. Chandrasekhar, “Hybrid 10/40G transmission on a 50-GHz grid through 2800 km of SSMF and seven optical add-drops,” IEEE Photon. Technol. Lett. 17(10), 2203–2205 (2005). [CrossRef]
  17. M. Huang, J. Chen, K. Feng, C. Wei, C. Lai, T. Lin, and S. Chi, “210-km bidirectional transmission system with a novel four-port interleaver to facilitate unidirectional amplification,” IEEE Photon. Technol. Lett. 18(1), 172–174 (2006). [CrossRef]
  18. J. Shin, M. Lee, K. Park, and B. Kim, “Optical label detection using optical interleavers”, Proc. 7th International Conference on Transparent Optical Networks (ICTON 2005), 2, 42- 45 (2005)
  19. M. Zhou, Q. Wang, B. Luo, Y. Guo, C. Ong, Y. Zhang, Y. Zhang, Y. Soh, and R. Miura, “Performance improvement and wavelength reuse in millimeter-wave radio-over-fiber links incorporating all-fiber optical interleaver,” Opt. Commun. 281(9), 2572–2581 (2008). [CrossRef]
  20. C. Cheng, “Asymmetrical interleaver structure based on the modified Michelson interferometer,” Opt. Eng. 44(11), 115003 (2005). [CrossRef]
  21. S. Wu, L. Chen, J. Fan, and S. Cao, “Asymmetric optical interleavers filter,” Acta Opt. Sin. 28(1), 31–35 (2008). [CrossRef]
  22. N. P. Ji and A. Dogariu, “Optical Tunable Asymmetric Interleaver,” Optical Fiber Communication Conference (OFC) 2006, OTuM7 (2006)
  23. P. Yeh, Optical Waves in Layered Media, (John Wiley and Sons, Inc., New York, 1991).
  24. C.-h. Cheng and D. J. Goode, “Michelson Interferometer Based Interleaver Design Algorithm Based on IIR Filter Model,” Proc. SPIE 6389, 638914 (2006). [CrossRef]
  25. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15(10), 6439–6457 (2007). [CrossRef] [PubMed]
  26. H. van de Stadt and J. M. Muller, “Multimirror Fabry-Perot interferometers,” J. Opt. Soc. Am. A 2(8), 1363–1370 (1985). [CrossRef]
  27. J. G. Proakis, Digital signal processing: Principles, Algorithms, and Applications, (Prentice-Hall, New Jersey, 1996).
  28. S. K. Mitra, Digital Signal Processing: a Computer-Based Approach, (McGraw-Hill, New York, 2006).
  29. M. Yang, C. Gu, and J. Hong, “Electro-optic Michelson Gires Tournois modulator for optical information processing and optical fiber communications,” Opt. Lett. 24(17), 1239–1241 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited