OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5114–5123

Long-term deformation at room temperature observed in fused silica

Maurizio Vannoni, Andrea Sordini, and Giuseppe Molesini  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5114-5123 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cases of long-term deformation of fused silica flats are reported. The phenomenon is detected at the scale of the nanometer, and exhibits a time constant of the order of 9 years. The observed deformation appears related to gravity and constraints, but a change of physical properties locally resulting in non-homothetic behavior is also hypothesized.

© 2010 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 25, 2009
Revised Manuscript: January 11, 2010
Manuscript Accepted: January 22, 2010
Published: February 25, 2010

Maurizio Vannoni, Andrea Sordini, and Giuseppe Molesini, "Long-term deformation at room temperature observed in fused silica," Opt. Express 18, 5114-5123 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Mysen, and P. Richet, Silicate Glasses and Melts (Elsevier, Amsterdam 2005).
  2. K. Numata, K. Yamamoto, H. Ishimoto, S. Otsuka, K. Kawabe, M. Ando, and K. Tsubono, “Systematic measurement of the intrinsic losses in various kinds of bulk fused silica,” Phys. Lett. A 327(4), 263–271 (2004). [CrossRef]
  3. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007). [CrossRef] [PubMed]
  4. M. Ando, K. Arai, R. Takahashi, G. Heinzel, S. Kawamura, D. Tatsumi, N. Kanda, H. Tagoshi, A. Araya, H. Asada, Y. Aso, M. A. Barton, M. K. Fujimoto, M. Fukushima, T. Futamase, K. Hayama, G. Horikoshi, H. Ishizuka, N. Kamikubota, K. Kawabe, N. Kawashima, Y. Kobayashi, Y. Kojima, K. Kondo, Y. Kozai, K. Kuroda, N. Matsuda, N. Mio, K. Miura, O. Miyakawa, S. M. Miyama, S. Miyoki, S. Moriwaki, M. Musha, S. Nagano, K. Nakagawa, T. Nakamura, K. Nakao, K. Numata, Y. Ogawa, M. Ohashi, N. Ohishi, S. Okutomi, K. Oohara, S. Otsuka, Y. Saito, M. Sasaki, S. Sato, A. Sekiya, M. Shibata, K. Somiya, T. Suzuki, A. Takamori, T. Tanaka, S. Taniguchi, S. Telada, K. Tochikubo, T. Tomaru, K. Tsubono, N. Tsuda, T. Uchiyama, A. Ueda, K. Ueda, K. Waseda, Y. Watanabe, H. Yakura, K. Yamamoto, T. Yamazaki, and TAMA Collaboration, “Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy,” Phys. Rev. Lett. 86(18), 3950–3954 (2001). [CrossRef] [PubMed]
  5. S. Jordan, “The GAIA project: Technique, performance and status,” Astron. Nachr. 329(9-10), 875–880 (2008). [CrossRef]
  6. G. W. Morey, “The flow of glass at room temperature,” J. Opt. Soc. Am. 42(11), 856–857 (1952). [CrossRef]
  7. E. D. Zanotto, “Do cathedral glasses flow?” Am. J. Phys. 66(5), 392–395 (1998). [CrossRef]
  8. M. Pasachoff, “Comment on ‘Do cathedral glasses flow?’,” Am. J. Phys. 66(11), 1021 (1998). [CrossRef]
  9. E. D. Zanotto and P. K. Gupta, “Do cathedral glasses flow? – Additional remarks,” Am. J. Phys. 67(3), 260–262 (1999). [CrossRef]
  10. Y. M. Stokes, “Flowing windowpanes: fact or fiction?” Proc. R. Soc. Lond. A 455(1987), 2751–2756 (1999). [CrossRef]
  11. Y. M. Stokes, “Flowing windowpanes: a comparison of Newtonian and Maxwell fluid models,” Proc. R. Soc. Lond. A 456(2000), 1861–1864 (2000). [CrossRef]
  12. G. D. Dew, “Some observations on the long-term stability of optical flat,” Opt. Acta (Lond.) 21, 609–614 (1974). [CrossRef]
  13. J. W. Berthold, S. F. Jacobs, and M. A. Norton, “Dimensional stability of fused silica, Invar, and several ultralow thermal expansion materials,” Appl. Opt. 15(8), 1898–1899 (1976). [CrossRef]
  14. J. W. Berthold, S. F. Jacobs, and M. A. Norton, “Dimensional stability of fused silica, Invar, and several ultralow thermal expansion materials,” Metrologia 13(1), 9–16 (1977). [CrossRef]
  15. D. A. Ketelsen and D. S. Anderson, “Optical testing with large liquid flats,” Proc. Soc. Photo Opt. Instrum. Eng. 966, 365–371 (1988).
  16. I. Powell and E. Goulet, “Absolute figure measurements with a liquid-flat reference,” Appl. Opt. 37(13), 2579–2588 (1998). [CrossRef]
  17. M. Vannoni and G. Molesini, “Validation of absolute planarity reference plates with a liquid mirror,” Metrologia 42(5), 389–393 (2005). [CrossRef]
  18. M. Schulz and C. Elster, “Traceable multiple sensor system for measuring curved surface profiles with high accuracy and high lateral resolution,” Opt. Eng. 45(6), 1–3 (2006). [CrossRef]
  19. P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng. 46(2), 1–9 (2007). [CrossRef]
  20. J. Yellowhair and J. H. Burge, “Analysis of a scanning pentaprism system for measurements of large flat mirrors,” Appl. Opt. 46(35), 8466–8474 (2007). [CrossRef] [PubMed]
  21. R. D. Geckeler, “Optimal use of pentaprism in highly accurate deflectometric scanning,” Meas. Sci. Technol. 18(1), 115–125 (2007). [CrossRef]
  22. G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl. Opt. 6(6), 1077–1084 (1967). [CrossRef] [PubMed]
  23. G. Schulz, J. Schwider, C. Hiller, and B. Kicker, “Establishing an optical flatness standard,” Appl. Opt. 10(4), 929–934 (1971). [CrossRef] [PubMed]
  24. J. Grzanna and G. Schulz, “Absolute testing of flatness standards at square-grid points,” Opt. Commun. 77(2-3), 107–112 (1990). [CrossRef]
  25. G. Schulz and J. Grzanna, “Absolute flatness testing by the rotation method with optimal measuring error compensation,” Appl. Opt. 31(19), 3767–3780 (1992). [CrossRef] [PubMed]
  26. G. Schulz, “Absolute flatness testing by an extended rotation method using two angles of rotation,” Appl. Opt. 32(7), 1055–1059 (1993). [CrossRef] [PubMed]
  27. J. Grzanna, “Absolute testing of optical flats at points on a square grid: error propagation,” Appl. Opt. 33(28), 6654–6661 (1994). [CrossRef] [PubMed]
  28. B. B. Oreb, D. I. Farrant, C. J. Walsh, G. Forbes, and P. S. Fairman, “Calibration of a 300-mm-aperture phase-shifting Fizeau interferometer,” Appl. Opt. 39(28), 5161–5171 (2000). [CrossRef]
  29. S. Sonozaki, K. Iwata, and Y. Iwahashi, “Measurement of profiles along a circle on two flat surfaces by use of a Fizeau interferometer with no standard,” Appl. Opt. 42(34), 6853–6858 (2003). [CrossRef] [PubMed]
  30. B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 33, 379–383 (1984).
  31. C. Ai and J. C. Wyant, “Absolute testing of flats by using even and odd functions,” Appl. Opt. 32(25), 4698–4705 (1993). [CrossRef] [PubMed]
  32. C. J. Evans and R. N. Kestner, “Test optics error removal,” Appl. Opt. 35(7), 1015–1021 (1996). [CrossRef] [PubMed]
  33. P. Hariharan, “Interferometric testing of optical surfaces: absolute measurement of flatness,” Opt. Eng. 36(9), 2478–2481 (1997). [CrossRef]
  34. C. J. Evans, “Comment on the paper ‘Interferometric testing of optical surfaces: absolute measurement of flatness,” Opt. Eng. 37(6), 1880–1882 (1998). [CrossRef]
  35. R. E. Parks, L.-Z. Shao, and C. J. Evans, “Pixel-based absolute topography test for three flats,” Appl. Opt. 37(25), 5951–5956 (1998). [CrossRef]
  36. V. Greco, R. Tronconi, C. D. Vecchio, M. Trivi, and G. Molesini, “Absolute measurement of planarity with Fritz’s method: uncertainty evaluation,” Appl. Opt. 38(10), 2018–2027 (1999). [CrossRef]
  37. K. R. Freischlad, “Absolute interferometric testing based on reconstruction of rotational shear,” Appl. Opt. 40(10), 1637–1648 (2001). [CrossRef]
  38. M. F. Küchel, “A new approach to solve the three flat problem,” Optik (Stuttg.) 112(9), 381–391 (2001). [CrossRef]
  39. U. Griesmann, “Three-flat test solutions based on simple mirror symmetry,” Appl. Opt. 45(23), 5856–5865 (2006). [CrossRef] [PubMed]
  40. U. Griesmann, Q. Wang, and J. Soons, “Three-flat tests including mounting-induced deformations,” Opt. Eng. 46(9), 093601 (2007). [CrossRef]
  41. M. Vannoni and G. Molesini, “Iterative algorithm for three flat test,” Opt. Express 15(11), 6809–6816 (2007). [CrossRef] [PubMed]
  42. M. Vannoni and G. Molesini, “Absolute planarity with three-flat test: an iterative approach with Zernike polynomials,” Opt. Express 16(1), 340–354 (2008). [CrossRef] [PubMed]
  43. International Bureau of Weights and Measures, International Electrotechnical Commission, International Federation of Clinical Chemistry, International Organization for Standardization, International Union of Pure and Applied Chemistry, International Union of Pure and Applied Physics, and International Organization of Legal Metrology, Guide to the Expression of Uncertainty in Measurements (International Organization for Standardization, Geneva, 1993).
  44. M. Vannoni and G. Molesini, “Three-flat test with plates in horizontal posture,” Appl. Opt. 47(12), 2133–2145 (2008). [CrossRef] [PubMed]
  45. W. A. Bassali and H. G. Eggleston, “The transverse flexure of thin elastic plates supported at several points,” Proc. Camb. Philos. Soc. 53(03), 728–742 (1957). [CrossRef]
  46. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology (Elsevier, Amsterdam 1989), p. 11.
  47. L. Landau, and E. Lifchitz, Théorie de l’Élasticité (MIR, Moscow 1967), p. 201.
  48. J. Langer, “The mysterious glass transition,” Phys. Today 60(2), 8–9 (2007). [CrossRef]
  49. N. J. Wagner and J. F. Brady, “Shear thickening in colloidal dispersions,” Phys. Today 62(10), 27–32 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3803 KB)     
» Media 2: AVI (3803 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited