OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5124–5134

Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer

Weiqiang Chen, Mark D. Thoreson, Satoshi Ishii, Alexander V. Kildishev, and Vladimir M. Shalaev  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5124-5134 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a method to fabricate ultra-thin, ultra-smooth and low-loss silver (Ag) films using a very thin germanium (Ge) layer as a wetting material and a rapid post-annealing treatment. The addition of a Ge wetting layer greatly reduces the surface roughness of Ag films deposited on a glass substrate by electron-beam evaporation. The percolation threshold of Ag films and the minimal thickness of a uniformly continuous Ag film were significantly reduced using a Ge wetting layer in the fabrication. A rapid post-annealing treatment is demonstrated to reduce the loss of the ultra-thin Ag film to the ideal values allowed by the quantum size effect in smaller grains. Using the same wetting method, we have also extended our studies to ultra-smooth silver-silica lamellar composite films with ultra-thin Ag sublayers.

© 2010 OSA

OCIS Codes
(160.3900) Materials : Metals
(240.0310) Optics at surfaces : Thin films
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: December 1, 2009
Revised Manuscript: December 24, 2009
Manuscript Accepted: January 5, 2010
Published: February 25, 2010

Weiqiang Chen, Mark D. Thoreson, Satoshi Ishii, Alexander V. Kildishev, and Vladimir M. Shalaev, "Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer," Opt. Express 18, 5124-5134 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  4. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004). [CrossRef]
  5. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  6. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. Fang, “Molecular Scale Imaging with a Smooth Superlens” (2009) http://arxiv.org/abs/0906.1213 .
  7. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005). [CrossRef]
  8. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional Imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007). [CrossRef] [PubMed]
  9. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686–1686 (2007). [CrossRef] [PubMed]
  10. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24(10), A52–A61 (2007). [CrossRef]
  11. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33(1), 43–45 (2008). [CrossRef]
  12. A. V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. E. Narimanov, “Materializing a binary hyperlens design,” Appl. Phys. Lett. 94(7), 071102 (2009). [CrossRef]
  13. Y. Xiong, Z. W. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009). [CrossRef]
  14. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  15. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32(23), 3432–3434 (2007). [CrossRef] [PubMed]
  16. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  17. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  19. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. S. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008). [CrossRef] [PubMed]
  20. L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer,” Nano Lett. 9(1), 178–182 (2009). [CrossRef]
  21. V. Shalaev, Optical properties of nanostructured random media (Springer, Berlin, 2002).
  22. P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008). [CrossRef]
  23. K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003). [CrossRef]
  24. A. Sarychev, and V. Shalaev, Electrodynamics of metamaterials (World Scientific, Singapore, 2007).
  25. V. M. Shalaev and M. I. Stockman, “Fractals - Optical Susceptibility and Giant Raman-Scattering,” Z. Phys. D At. Mol. Clust. 10(1), 71–79 (1988). [CrossRef]
  26. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. special issue on Metamaterials (Amst.) 7, S32–S37 (2005).
  27. H. Lüth, Solid surfaces, interfaces and thin films (Springer, New York, NY, 2001).
  28. J. Israelachvili, Intermolecular and surface forces (Academic press, London, 1992).
  29. K. Kendall, “Solid-Surface Energy Measured Electrically,” J. Phys. D Appl. Phys. 23(10), 1329–1331 (1990). [CrossRef]
  30. R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc. 110(6), 524–527 (1963). [CrossRef]
  31. D. R. Lide, “CRC Handbook of Chemistry and Physics,” (CRC Press, Boca Raton, FL, 2008).
  32. X. Ni, Z. Liu, and A. V. Kildishev, “PhotonicsDB: Optical Constants” (2007), DOI:10254/nanohub-r3692.5.
  33. S. Ishii, U. K. Chettiar, X. Ni, and A. V. Kildishev, “PhotonicsRT: Wave Propagation in Multilayer Structures” (2008), DOI:10254/nanohub-r5968.8.
  34. A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557(1-3), 269–280 (2004). [CrossRef]
  35. A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73(4), 361–372 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited