OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5151–5160

A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects

Xuezhe Zheng, Ivan Shubin, Guoliang Li, Thierry Pinguet, Attila Mekis, Jin Yao, Hiren Thacker, Ying Luo, Joey Costa, Kannan Raj, John E. Cunningham, and Ashok V. Krishnamoorthy  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5151-5160 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (415 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first compact silicon CMOS 1x4 tunable multiplexer/ demultiplexer using cascaded silicon photonic ring-resonator based add/drop filters with a radius of 12μm, and integrated doped-resistor thermal tuners. We measured an insertion loss of less than 1dB, a channel isolation of better than 16dB for a channel spacing of 200GHz, and a uniform 3dB pass band larger than 0.4nm across all four channels. We demonstrated accurate channel alignment to WDM ITU grid wavelengths using integrated silicon heaters with a tuning efficiency of 90pm/mW. Using this device in a 10Gbps data link, we observed a low power penalty of 0.6dB.

© 2010 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.0130) Integrated optics : Integrated optics
(250.0250) Optoelectronics : Optoelectronics
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:

Original Manuscript: December 11, 2009
Revised Manuscript: February 8, 2010
Manuscript Accepted: February 8, 2010
Published: February 25, 2010

Xuezhe Zheng, Ivan Shubin, Guoliang Li, Thierry Pinguet, Attila Mekis, Jin Yao, Hiren Thacker, Ying Luo, Joey Costa, Kannan Raj, John E. Cunningham, and Ashok V. Krishnamoorthy, "A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects," Opt. Express 18, 5151-5160 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computing microsystems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009). [CrossRef]
  2. A. Shacham, et al., “On the Design of a Photonic Network-on-Chip,” Proceedings of the First International Symposium on Networks-on-Chip (NOCS), 2007.
  3. D. Vantrease et al., “Corona: System Implications of Emerging Nanophotonic Technology,” ISCA '08, pp. 153–164, June 2008.
  4. C. Batten et al., “Building manycore processor-to-DRAM network with monolithic silicon photonics,”HOTI 2008, pp.21–30, Aug. 2008.
  5. K. Sasaki, A. Motegi, F. Ohno, and T. Baba, “Si Photonic Wire AWG of 70 × 60 μm2 Size, ” IEEE Conference on Lasers & Electro-Optics (CLEO), pp.478–479, Aug. 2005.
  6. D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Novel Fabrication Tolerant Flat-Top Demultiplexers Based on Etched Diffraction Gratings in SOI,” IEEE Conference on Group IV Photonics, pp.386–388, Sept. 2008.
  7. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Proposed silicon wire interleaver structure,” Opt. Express 16(11), 7849–7859 (2008). [CrossRef] [PubMed]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Tech. 15(6), 998–1005 (1997). [CrossRef]
  9. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An Eight-Channel Add–Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999). [CrossRef]
  10. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998). [CrossRef]
  11. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” IEEE LEOS Conference on Quantum electronics and Laser Science (CLEO/QELS), pp.1–2, June 2009.
  12. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004). [CrossRef]
  13. M. A. Popovic, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, and E. P. Ippen, F. X. Kartner, and H. I. Smith, “Multistage high-order microring-resonator filters with relaxed tolerances for high through-port extinction,” IEEE Conference on Lasers & Electro-Optics (CLEO), pp266–268, Aug. 2005.
  14. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007). [CrossRef] [PubMed]
  15. C. W. Holzwarth, T. Barwicz, M. A. Popović, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and I. H. Smith,“Accurate resonant frequency spacing of microring filters without post fabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006). [CrossRef]
  16. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (Wiley Series in Microwave and Optical Engineering, 1999).
  17. O. Schwelb, “Transmission, Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filters—A Tutorial Overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004). [CrossRef]
  18. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  19. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited