OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5179–5187

Carbon nanohorns-based nanofluids as direct sunlight absorbers

E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5179-5187 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (746 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optimization of the poor heat transfer characteristics of fluids conventionally employed in solar devices are at present one of the main topics for system efficiency and compactness. In the present work we investigated the optical and thermal properties of nanofluids consisting in aqueous suspensions of single wall carbon nanohorns. The characteristics of these nanofluids were evaluated in view of their use as sunlight absorber fluids in a solar device. The observed nanoparticle-induced differences in optical properties appeared promising, leading to a considerably higher sunlight absorption. We found that the thermal conductivity of the nanofluids was higher than pure water. Both these effects, together with the possible chemical functionalization of carbon nanohorns, make this new kind of nanofluids very interesting for increasing the overall efficiency of the sunlight exploiting device.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy
(160.4236) Materials : Nanomaterials

ToC Category:
Solar Energy

Original Manuscript: December 15, 2009
Revised Manuscript: February 8, 2010
Manuscript Accepted: February 10, 2010
Published: February 25, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

E. Sani, S. Barison, C. Pagura, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, and F. Francini, "Carbon nanohorns-based nanofluids as direct sunlight absorbers," Opt. Express 18, 5179-5187 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83(7), 969–977 (2009). [CrossRef]
  2. R. Bertocchi, A. Kribus, and J. Karni, “Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver,” J. Sol. Energy. Eng. 126(3), 833–841 (2004). [CrossRef]
  3. R. Bertocchi, J. Karni, and A. Kribus, “Experimental evaluation of a non-isothermal high temperature solar particle receiver,” Energy 29(5-6), 687–700 (2004). [CrossRef]
  4. H. Yuncu, E. Paykoc, and Y. Yener, Solar energy utilization (Kluwer Academic Publishers, 1987).
  5. W. Wu, D. M. France, J. L. Routbort, and S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Eng. 29(5), 432–460 (2008). [CrossRef]
  6. H. Tyagi, P. Phelan, R. Prasher “Predicted efficiency of a nanofluid-based direct absorption solar receiver,” Proceedings ES2007, Energy Sustainability 2007, June 27-30, 2007, Long Beach, California.
  7. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718–720 (2001). [CrossRef]
  8. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett . 87, 215502-1-215502-4 (2001). [CrossRef]
  9. E. Natarajan and R. Sathish, “Role of nanofluids in solar water heater,” Int. J. Adv. Manuf. Technol. , doi:, http://www.springerlink.com/content/9076620323870634/?p=2e88fcc3359c49d39a4b5dc896d051b4&pi=0 .
  10. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. 79(14), 2252–2254 (2001). [CrossRef]
  11. M. J. Assael, C.-F. Chen, I. Metaxa, and W. A. Wakeham, Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys. 25(4), 971–985 (2004). [CrossRef]
  12. N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel’nikov, “The Effect of the Size, Shape, and Structure of Metal Nanoparticles on the Dependence of Their Optical Properties on the Refractive Index of a Disperse Medium,” Opt. Spectrosc . 98,77-83 (2005). [CrossRef]
  13. J. Hone, M. Whitney, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met. 103(1-3), 2498–2499 (1999). [CrossRef]
  14. S. Berber, Y. K. Kwon, and D. Tomànek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84(20), 4613–4616 (2000). [CrossRef] [PubMed]
  15. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3-4), 165–170 (1999). [CrossRef]
  16. X. Fan, J. Tan, G. Zhang, and F. Zhang, “Isolation of carbon nanohorn assemblies and their potential for intracellular delivery,” Nanotechnology 18(19), 195103 (2007). [CrossRef]
  17. V. Krungleviciute, A. D. Migone, and M. Pepka, “Characterization of single-walled carbon nanohorns using neon adsorption isotherms,” Carbon 47(3), 769–774 (2009). [CrossRef]
  18. K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, “Pore structure of single-wall carbon nanohorn aggregates,” Chem. Phys. Lett. 331(1), 14–20 (2000). [CrossRef]
  19. M. Yudasaka, S. Iijima, and V. H. Crespi, “Single-wall carbon nanohorns and nanocones,” Topics. Appl. Phys. 111, 605–629 (2008) Vol 11. [CrossRef]
  20. J. L. Delgado, M. A. Herranz, and N. Martin, “The nano-forms of carbon,” J. Mater. Chem. 18(13), 1417–1426 (2008). [CrossRef]
  21. G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis, M. Yudasaka, S. Iijima, and O. Ito, “Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles,” J. Phys. Chem. B 110(42), 20729–20732 (2006). [CrossRef] [PubMed]
  22. R. M. Lynch, B. H. Voy, D. F. Glass, S. M. Mahurin, B. Zhao, H. Hu, A. M. Saxton, R. L. Donnell, and M.- Cheng, “Assessing the pulmonary toxicity of single-walled carbon nanohorns,” Nanotoxicology 1(2), 157–166 (2007). [CrossRef]
  23. S. Battiston, M. Bolzan, S. Fiameni, R. Gerbasi, M. Meneghetti, E. Miorin, C. Mortalò, and C. Pagura, “Single wall carbon nanohorns coated with anatase titanium oxide,” Carbon 47(5), 1321–1326 (2009). [CrossRef]
  24. M. Khayet and J. M. Ortiz de Zarate, “Application of the multi-current transient hot-wire technique for absolute measurements of the thermal conductivity of glycols,” Int. J. Thermophysics 26(3), 637–646 (2005). [CrossRef]
  25. S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Lett. 6(3), 419–423 (2006). [CrossRef] [PubMed]
  26. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 1983).
  27. CIE Technical Report no. 85 “Solar Spectral Irradiance” (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited