OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5188–5198

Chaos-on-a-chip secures data transmission in optical fiber links

Apostolos Argyris, Evangellos Grivas, Michael Hamacher, Adonis Bogris, and Dimitris Syvridis  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5188-5198 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Security in information exchange plays a central role in the deployment of modern communication systems. Besides algorithms, chaos is exploited as a real-time high-speed data encryption technique which enhances the security at the hardware level of optical networks. In this work, compact, fully controllable and stably operating monolithic photonic integrated circuits (PICs) that generate broadband chaotic optical signals are incorporated in chaos-encoded optical transmission systems. Data sequences with rates up to 2.5 Gb/s with small amplitudes are completely encrypted within these chaotic carriers. Only authorized counterparts, supplied with identical chaos generating PICs that are able to synchronize and reproduce the same carriers, can benefit from data exchange with bit-rates up to 2.5Gb/s with error rates below 10−12. Eavesdroppers with access to the communication link experience a 0.5 probability to detect correctly each bit by direct signal detection, while eavesdroppers supplied with even slightly unmatched hardware receivers are restricted to data extraction error rates well above 10−3.

© 2010 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.4785) Fiber optics and optical communications : Optical security and encryption

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 17, 2009
Revised Manuscript: January 29, 2010
Manuscript Accepted: February 1, 2010
Published: February 25, 2010

Apostolos Argyris, Evangellos Grivas, Michael Hamacher, Adonis Bogris, and Dimitris Syvridis, "Chaos-on-a-chip secures data transmission in optical fiber links," Opt. Express 18, 5188-5198 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Katz, and Y. Lindell, Introduction To Modern Cryptography: Principles and Protocols (Chapman & Hall / CRC Press, 2007)
  2. B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C (Wiley, 1996)
  3. Federal Information Processing Standards Publication 197, “Announcing the advanced encryption standard (AES),” (2001) http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  4. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5(1), 3–28 (1992). [CrossRef]
  5. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98(1), 010504 (2007). [CrossRef] [PubMed]
  6. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998). [CrossRef] [PubMed]
  7. P. Colet and R. Roy, “Digital communication with synchronized chaotic lasers,” Opt. Lett. 19(24), 2056–2058 (1994). [CrossRef] [PubMed]
  8. S. Tang and J. M. Liu, “Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers,” Opt. Lett. 26(23), 1843–1845 (2001). [CrossRef]
  9. K. Kusumoto and J. Ohtsubo, “1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers,” Opt. Lett. 27(12), 989–991 (2002). [CrossRef]
  10. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005). [CrossRef]
  11. L. Larger and J. P. Goedgebuer, “Cryptography using optical chaos,” C. R. Phys. 5, 609–681 (2004). [CrossRef]
  12. K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz, “Synchronization of Lorenz based chaotic circuits with applications to communications,” IEEE Trans. Circuits Syst. II 40(10), 626–633 (1993). [CrossRef]
  13. “Introduction to the feature section on optical chaos and applications to cryptography,” IEEE J. Quantum Electron. 38(9), 1138–1140 (2002).
  14. P. Ashwin, “Nonlinear dynamics: Synchronization from chaos,” Nature 422(6930), 384–385 (2003). [CrossRef] [PubMed]
  15. C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8(2), 299–301 (1996). [CrossRef]
  16. T. Franck, S. D. Brorson, A. Moller-Larsen, J. M. Nielsen, and J. Mork, “Synchronization phase diagrams of monolithic colliding pulse mode-locked lasers,” IEEE Photon. Technol. Lett. 8(1), 40–42 (1996). [CrossRef]
  17. S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004). [CrossRef] [PubMed]
  18. O. Ushakov, S. Bauer, O. Brox, H.-J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004). [CrossRef] [PubMed]
  19. M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett. 98(4), 044101 (2007). [CrossRef] [PubMed]
  20. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008). [CrossRef] [PubMed]
  21. L. Shu, and D. J. Jr, Costello, Error Control Coding: Fundamentals and Applications (Prentice-Hall, New Jersey, 1983)
  22. S. G. Wilson, Digital Modulation and Coding (Prentice-Hall, New Jersey, 1996)
  23. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980). [CrossRef]
  24. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992). [CrossRef]
  25. H. Olesen, J. H. Osmundsen, and B. Tromborg, “Nonlinear dynamics and spectral behaviour for an external cavity laser,” IEEE J. Quantum Electron. 22(6), 762–773 (1986). [CrossRef]
  26. J. Sacher, W. Elsasser, and E. O. Gobel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27(3), 373–379 (1991). [CrossRef]
  27. H. Kakiuchida and J. Ohtsubo, “Characteristics of a semiconductor laser with external feedback,” IEEE J. Quantum Electron. 30(9), 2087–2097 (1994). [CrossRef]
  28. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995). [CrossRef]
  29. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer, 2007)
  30. R. Vicente, J. Dauden, P. Colet, and R. Toral, ““Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE. J,” Quantum Electron. 41(4), 541–548 (2005). [CrossRef]
  31. T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003). [CrossRef]
  32. M. W. Lee, J. Paul, S. Sivaprakasam, and K. A. Shore, “Comparison of closed-loop and open-loop feedback schemes of message decoding using chaotic laser diodes,” Opt. Lett. 28(22), 2168–2170 (2003). [CrossRef] [PubMed]
  33. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990). [CrossRef] [PubMed]
  34. L. M. Pecora and T. L. Carroll, “Driving systems with chaotic signals,” Phys. Rev. A 44(4), 2374–2383 (1991). [CrossRef] [PubMed]
  35. K. M. Cuomo and A. V. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications,” Phys. Rev. Lett. 71(1), 65–68 (1993). [CrossRef] [PubMed]
  36. A. Uchida, M. Shinozuka, T. Ogawa, and F. Kannari, “Experiments on chaos synchronization in two separate microchip lasers,” Opt. Lett. 24(13), 890–892 (1999). [CrossRef]
  37. H. Fujino and J. Ohtsubo, “Experimental synchronization of chaotic oscillations in external-cavity semiconductor lasers,” Opt. Lett. 25(9), 625–627 (2000). [CrossRef]
  38. R. Vicente, T. Pérez, and C. R. Mirasso, “Open-versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1197–1204 (2002). [CrossRef]
  39. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007). [CrossRef] [PubMed]
  40. J.-G. Wu, G.-Q. Xia, and Z.-M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009). [CrossRef] [PubMed]
  41. M. C. Soriano, P. Colet, and C. R. Mirasso, “Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications,” IEEE Photon. Technol. Lett. 21(7), 426–428 (2009). [CrossRef]
  42. V. S. Udaltsov, J.-P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308(1), 54–60 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited