OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5199–5212

A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging

Pei-Hsun Wu, Nathaniel Nelson, and Yiider Tseng  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 5199-5212 (2010)
http://dx.doi.org/10.1364/OE.18.005199


View Full Text Article

Enhanced HTML    Acrobat PDF (482 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electron-multiplying charge-coupled device (EMCCD) camera possesses an electron multiplying function that can effectively convert the weak incident photon signal to amplified electron output, thereby greatly enhancing the contrast of the acquired images. This device has become a popular photon detector in single-cell biophysical assays to enhance subcellular images. However, the quantitative relationship between the resolution in such measurements and the electron multiplication setting in the EMCCD camera is not well-understood. We therefore developed a method to characterize the exact dependence of the signal-to-noise-ratio (SNR) on EM gain settings over a full range of incident light intensity. This information was further used to evaluate the EMCCD performance in subcellular particle tracking. We conclude that there are optimal EM gain settings for achieving the best SNR and the best spatial resolution in these experiments. If it is not used optimally, electron multiplication can decrease the SNR and increases spatial error.

© 2010 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.1520) Detectors : CCD, charge-coupled device
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(110.2970) Imaging systems : Image detection systems
(110.3000) Imaging systems : Image quality assessment
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(330.6130) Vision, color, and visual optics : Spatial resolution

ToC Category:
Detectors

History
Original Manuscript: October 13, 2009
Revised Manuscript: January 22, 2010
Manuscript Accepted: February 6, 2010
Published: February 26, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Pei-Hsun Wu, Nathaniel Nelson, and Yiider Tseng, "A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging," Opt. Express 18, 5199-5212 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5199


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Eskiw, G. Dellaire, J. S. Mymryk, and D. P. Bazett-Jones, “Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly,” J. Cell Sci. 116(21), 4455–4466 (2003). [CrossRef] [PubMed]
  2. A. A. Gerencser, J. Doczi, B. Töröcsik, E. Bossy-Wetzel, and V. Adam-Vizi, “Mitochondrial swelling measurement in situ by optimized spatial filtering: astrocyte-neuron differences,” Biophys. J. 95(5), 2583–2598 (2008). [CrossRef] [PubMed]
  3. S. M. Görisch, M. Wachsmuth, C. Ittrich, C. P. Bacher, K. Rippe, and P. Lichter, “Nuclear body movement is determined by chromatin accessibility and dynamics,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13221–13226 (2004). [CrossRef] [PubMed]
  4. E. S. Levitan, F. Lanni, and D. Shakiryanova, “In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction,” Nat. Protoc. 2(5), 1117–1125 (2007). [CrossRef] [PubMed]
  5. C. Bakal, J. Aach, G. Church, and N. Perrimon, “Quantitative morphological signatures define local signaling networks regulating cell morphology,” Science 316(5832), 1753–1756 (2007). [CrossRef] [PubMed]
  6. M. Benoit, D. Gabriel, G. Gerisch, and H. E. Gaub, “Discrete interactions in cell adhesion measured by single-molecule force spectroscopy,” Nat. Cell Biol. 2(6), 313–317 (2000). [CrossRef] [PubMed]
  7. T. P. Kole, Y. Tseng, L. Huang, J. L. Katz, and D. Wirtz, “Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation,” Mol. Biol. Cell 15(7), 3475–3484 (2004). [CrossRef] [PubMed]
  8. G. Fink, L. Hajdo, K. J. Skowronek, C. Reuther, A. A. Kasprzak, and S. Diez, “The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding,” Nat. Cell Biol. 11(6), 717–723 (2009). [CrossRef] [PubMed]
  9. J. Y. Xu, Y. Tseng, C. J. Carriere, and D. Wirtz, “Microheterogeneity and microrheology of wheat gliadin suspensions studied by multiple-particle tracking,” Biomacromolecules 3(1), 92–99 (2002). [CrossRef] [PubMed]
  10. I. McWhirter, “Electron Multiplying CCDs - New Technology for Low Light Level Imaging,” Proceedings of 33rd annual European meeting on atmospheric studies by optical methods IRF science report 292, 61–66 (2008).
  11. M. Jonas, H. Huang, R. D. Kamm, and P. T. So, “Fast fluorescence laser tracking microrheometry. I: instrument development,” Biophys. J. 94(4), 1459–1469 (2008). [CrossRef]
  12. Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77(1), 553–567 (1999). [CrossRef] [PubMed]
  13. A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science 303(5658), 676–678 (2004). [CrossRef]
  14. J. R. Unruh and E. Gratton, “Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera,” Biophys. J. 95(11), 5385–5398 (2008). [CrossRef] [PubMed]
  15. J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron. Dev. 48(10), 2238–2241 (2001). [CrossRef]
  16. L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A Characterization of the Single-photon Sensitivity of an Electron Multiplying Charge-Coupled Device,” J. Phys. B 42(11), 114011 (2009). [CrossRef]
  17. M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron. Dev. 50(5), 1227–1232 (2003). [CrossRef]
  18. S. Li, S. L. Lian, J. J. Moser, M. L. Fritzler, M. J. Fritzler, M. Satoh, and E. K. Chan, “Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing,” J. Cell Sci. 121(24), 4134–4144 (2008). [CrossRef] [PubMed]
  19. P. H. Wu, S. H. Arce, P. R. Burney, and Y. Tseng, “A novel approach to high accuracy of video-based microrheology,” Biophys. J. 96(12), 5103–5111 (2009). [CrossRef] [PubMed]
  20. T. Savin and P. S. Doyle, “Static and dynamic errors in particle tracking microrheology,” Biophys. J. 88(1), 623–638 (2005). [CrossRef]
  21. R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, NJ, 2002).
  22. Y. Reibel, M. Jung, M. Bouhifd, B. Cunin, and C. Draman, “CCD or CMOS Camera Noise Characterisation,” Eur. Phys. J. D 21, 75–80 (2003).
  23. J. C. Mullikin, L. J. van Vliet, H. Netten, F. R. Boddeke, G. van der Feltz, and I. T. Young, “Methods For CCD Camera Characterization,” SPIE Image Acquis. Sci. Imaging Syst. 2173, 73–84 (1994).
  24. S. Weidtkamp-Peters, T. Lenser, D. Negorev, N. Gerstner, T. G. Hofmann, G. Schwanitz, C. Hoischen, G. Maul, P. Dittrich, and P. Hemmerich, “Dynamics of component exchange at PML nuclear bodies,” J. Cell Sci. 121(16), 2731–2743 (2008). [CrossRef] [PubMed]
  25. B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited