OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5213–5220

Stable transfer of an optical frequency standard via a 4.6 km optical fiber

Adam J. Mullavey, Bram J. J. Slagmolen, Daniel A. Shaddock, and David E. McClelland  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5213-5220 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a technique for the stable transfer of an optical frequency reference over a kilometer-scale optical fiber link. This technique implements phase measurements and laser feedback to cancel out the phase fluctuations that are introduced to an optical frequency standard as it passes through the fiber. We also present results for a bench top experiment, developed for the Advanced LIGO lock acquisition system, where this technique is implemented to phase-lock two Nd:YAG lasers, through a 4.6 km optical fiber. The resulting differential optical frequency noise reaches a level as low as 0.5 mHz/√Hz for Fourier frequencies between 5 Hz and 20 Hz, which is equal to a fractional frequency stability of 1.7 × 10-18/√Hz.

© 2010 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 10, 2009
Revised Manuscript: January 25, 2010
Manuscript Accepted: February 21, 2010
Published: February 26, 2010

Adam J. Mullavey, Bram J. J. Slagmolen, Daniel A. Shaddock, and David E. McClelland, "Stable transfer of an optical frequency standard via a 4.6 km optical fiber," Opt. Express 18, 5213-5220 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, "Femtosecond-laser-based optical clockwork with instability ≤ 6.3×10−16 in 1s," Opt. Lett. 27, 58-60 (2002). [CrossRef]
  2. T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  3. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Frequency ratio of Al+ and Hg+ and single-ion optical clocks; Metrology at the 17th decimal place," Science 319, 1808-1812 (2008). [CrossRef] [PubMed]
  4. A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavic, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, "Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level," Metrologia 43, 109-120 (2006). [CrossRef]
  5. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, "Remote transfer of ultrastable frequency references via fiber networks," Rev. Sci. Instrum. 78, 021101 (2007). [CrossRef] [PubMed]
  6. F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, C. Daussy, A. Amy-Klein, and C. Chardonnet, "High resolution frequency standard dissemination via optical fiber metropolitan network," Rev. Sci. Instrum. 77, 064701 (2006). [CrossRef]
  7. The Advanced LIGO Team, "Advanced LIGO Reference Design," LIGO M060056-v1 (2009), https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=1507
  8. B. Slagmolen, G. de Vine, D. Rabeling, K. McKenzie, A. Mullavey, D. Shaddock, D. McClelland, M. Evans, and Y. Aso, "Advanced LIGO arm cavity pre-lock acquisition system," (2008), http://www.ligo.caltech.edu/docs/T/T080139-00.pdf
  9. P. A. Williams, W. C. Swann, and N. R. Newbury, "High-stability transfer of an optical frequency over long fiber-optic links," J. Opt. Soc. Am. B 25, 1284-1293 (2008). [CrossRef]
  10. G. Grosche, O. Terra, K. Predahl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, "Optical frequency transfer via 146km fiber link with 10−19 relative accuracy," Opt. Lett. 34, 2270-2272 (2009). [CrossRef] [PubMed]
  11. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, "Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path," Opt. Lett. 19, 1777-1779 (1994). [CrossRef] [PubMed]
  12. G. Heinzel, C. Braxmaier, K. Danzmann, P. Gath, J. Hough, O. Jennrich, U. Johann, A. Rudiger, M. Sallusti, and H. Schulte, "LISA inteferferometry: recent developments," Class. Quantum Grav. 23, S119-S124 (2006). [CrossRef]
  13. M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, "Photodetector designs for low-noise, broadband, and high-power applications," Rev. Sci. Instrum. 69, 3755-3762 (1998). [CrossRef]
  14. D. A. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, "Overview of the LISA Phasemeter," AIP Conf. Proc. Laser Interferometer Space Antenna: 6th International LISA Symposium 873, 654-660 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited