OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5221–5228

Creation of large band gap with anisotropic annular photonic crystal slab structure

Peng Shi, Kun Huang, Xue-liang Kang, and Yong-ping Li  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5221-5228 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-dimensional anisotropic annular photonic crystal slab structure composed of circular air holes and dielectric rods with finite thickness in a triangular lattice is presented to achieve an absolute photonic band gap. Positive uniaxial crystal Tellurium is introduced to the structure with the extraordinary axis parallel to the extension direction of rods. The role of each geometric parameter is investigated by employing the conjugate-gradient method. A large mid-gap ratio is realized by the parameter optimization. A flat band called as anomalous group velocity within two large gaps is discovered and can be widely applied in many fields. A hybrid structure with GaAs slab and Te rods is designed to achieve a large gap and demonstrates that the annular structure can improve the gap effectively.

© 2010 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.5293) Materials : Photonic bandgap materials
(230.5298) Optical devices : Photonic crystals
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Photonic Crystals

Original Manuscript: December 2, 2009
Revised Manuscript: January 13, 2010
Manuscript Accepted: January 30, 2010
Published: February 26, 2010

Peng Shi, Kun Huang, Xue-liang Kang, and Yong-ping Li, "Creation of large band gap with anisotropic annular photonic crystal slab structure," Opt. Express 18, 5221-5228 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43(16), 12772–12789 (1991). [CrossRef]
  2. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50(2), 1764–1769 (1994). [CrossRef] [PubMed]
  3. S. Y. Zhu, H. Chen, and H. Huang, “Quantum Interference Effects in Spontaneous Emission from an Atom Embedded in a Photonic Band Gap Structure,” Phys. Rev. Lett. 79(2), 205–208 (1997). [CrossRef]
  4. T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996). [CrossRef]
  5. U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm,” Appl. Phys. Lett. 68(6), 747–749 (1996). [CrossRef]
  6. K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement,” Phys. Rev. B 53(3), 1010–1013 (1996). [CrossRef]
  7. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999). [CrossRef]
  8. Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, “Nanoimprinted circular grating distributed feedback dye laser,” Appl. Phys. Lett. 91(5), 051109 (2007). [CrossRef]
  9. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302(5649), 1374–1377 (2003). [CrossRef] [PubMed]
  10. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  11. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005). [CrossRef] [PubMed]
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995), pp.66–93.
  13. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005). [CrossRef] [PubMed]
  14. H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33(14), 1614–1616 (2008). [CrossRef] [PubMed]
  15. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals,” Phys. Rev. Lett. 81(12), 2574–2577 (1998). [CrossRef]
  16. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995), pp.135–155.
  17. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48(11), 8434–8437 (1993). [CrossRef]
  18. Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58(7), 3721–3729 (1998). [CrossRef]
  19. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17(3), 387–400 (2000). [CrossRef]
  20. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002). [CrossRef]
  21. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006). [CrossRef] [PubMed]
  22. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  23. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009). [CrossRef] [PubMed]
  24. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009). [CrossRef] [PubMed]
  25. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  26. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]
  27. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004). [CrossRef] [PubMed]
  28. K. Sakoda, Optical properties of photonic crystals (Springer, Berlin, Allemagne, 2001).
  29. J. B. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009). [CrossRef]
  30. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999). [CrossRef]
  31. K. Srinivasan and O. Painter, “Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,” Opt. Express 11(6), 579–593 (2003). [CrossRef] [PubMed]
  32. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002). [PubMed]
  33. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited