OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5289–5294

Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser

Eduardo Granados, Helen M. Pask, Elric Esposito, Gail McConnell, and David J. Spence  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 5289-5294 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the operation of a cascaded continuous wave (CW) mode-locked Raman oscillator. The output pulses were compressed from 28 ps at 532 nm down to 6.5 ps at 559 nm (first Stokes) and 5.5 ps at 589 nm (second Stokes). The maximum output was 2.5 W at 559 nm and 1.4 W at 589 nm with slope efficiencies up to 52%. This technique allows simple and efficient generation of short-pulse radiation to the cascaded Stokes wavelengths, extending the mode-locked operation of Raman lasers to a wider range of visible wavelengths between 500 – 650 nm based on standard inexpensive picosecond Nd:YAG oscillators.

© 2010 OSA

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(180.0180) Microscopy : Microscopy
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 6, 2010
Revised Manuscript: February 7, 2010
Manuscript Accepted: February 8, 2010
Published: February 26, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Eduardo Granados, Helen M. Pask, Elric Esposito, Gail McConnell, and David J. Spence, "Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser," Opt. Express 18, 5289-5294 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005). [CrossRef] [PubMed]
  2. G. McConnell, G. L. Smith, J. M. Girkin, A. M. Gurney, and A. I. Ferguson, “Two-photon microscopy of fura-2-loaded cardiac myocytes with an all-solid-state tunable and visible femtosecond laser source,” Opt. Lett. 28(19), 1742–1744 (2003). [CrossRef] [PubMed]
  3. J. Palero, V. Boer, J. Vijverberg, H. Gerritsen, and H. J. C. M. Sterenborg, “Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source,” Opt. Express 13(14), 5363–5368 (2005). [CrossRef] [PubMed]
  4. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008). [CrossRef]
  5. R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004). [CrossRef] [PubMed]
  6. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009). [CrossRef] [PubMed]
  7. G. G. Grigoryan and S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing an LiIO3 crystal,” Sov. J. Quantum Electron. , 1402 (1989). [CrossRef]
  8. E. Granados, A. Fuerbach, D. Coutts, and D. Spence, “Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses,” Appl. Phys. B 97(4), 759–763 (2009). [CrossRef]
  9. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979). [CrossRef]
  10. T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004). [CrossRef]
  11. L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, “Generation of femtosecond pulses from order-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24(1), 28–30 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited