OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5320–5327

Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control

Peter John Rodrigo and Christian Pedersen  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 5320-5327 (2010)
http://dx.doi.org/10.1364/OE.18.005320


View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optimization of signal-to-noise ratio is an important aspect in the design of optical heterodyne detection systems such as a coherent Doppler lidar (CDL). In a CDL, optimal performance is achieved when the noise in the detector signal is dominated by local oscillator shot-noise. Most modern CDL systems are built using rugged and cost-efficient fiber optic components. Unfortunately, leakage signals such as residual reflections inherent within fiber components (e.g. circulator) can introduce phase-induced intensity noise (PIIN) to the Doppler spectrum in a CDL. Such excess noise may be a few orders of magnitude above the shot-noise level within the relevant CDL frequency bandwidth – corrupting the measurement of typically weak backscattered signals. In this study, observation of PIIN in a fiber-based CDL with a master-oscillator power-amplifier tapered semiconductor laser source is reported. Furthermore, we experimentally demonstrate what we believe is a newly proposed method using a simple polarization scheme to reduce PIIN by more than an order of magnitude.

© 2010 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 15, 2010
Revised Manuscript: February 25, 2010
Manuscript Accepted: February 25, 2010
Published: February 26, 2010

Citation
Peter John Rodrigo and Christian Pedersen, "Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control," Opt. Express 18, 5320-5327 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5320


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. T. Menzies and R. M. Hardesty, “Coherent Doppler Lidar for Measurements of Wind Fields,” Proc. IEEE 77(3), 449–462 (1989). [CrossRef]
  2. R. M. Huffaker and R. M. Hardesty, “Remote sensing of the atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996). [CrossRef]
  3. http://www.naturalpower.com/zephir-laser-anemometer
  4. http://www.lidarwindtechnologies.com/
  5. http://www.catchthewindinc.com/products/vindicator
  6. R. S. Hansen and C. Pedersen, “All semiconductor laser Doppler anemometer at 1.55 microm,” Opt. Express 16(22), 18288–18295 (2008). [CrossRef] [PubMed]
  7. P. J. Rodrigo, and C. Pedersen, “Doppler wind lidar using a MOPA semiconductor laser at stable single-frequency operation,” In: Technical Digest. 19th International Congress on Photonics in Europe, CLEO/Europe-EQEC 2009.
  8. G. C. Dente and M. L. Tilton, “Modeling Multiple-Longitudinal-Mode Dynamics in Semiconductor Lasers,” IEEE J. Quantum Electron. 34(2), 325–335 (1998). [CrossRef]
  9. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-Noise Narrow-Linewidth Fiber Laser at 1550 nm,” J. Lightwave Technol. 22(1), 57–62 (2004). [CrossRef]
  10. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46(11), 1953–1962 (2007). [CrossRef] [PubMed]
  11. J. F. Holmes and B. J. Rask, “Optimum optical local-oscillator power levels for coherent detection with photodiodes,” Appl. Opt. 34(6), 927–933 (1995). [CrossRef] [PubMed]
  12. D. W. Jaynes, J. F. Manwell, J. G. McGowan, W. M. Stein, and A. L. Rogers, “MTC Final Progress Report: LIDAR,” Renewable Energy Research Laboratory, July 19 (2007).
  13. S. O’Brien, D. F. Welch, R. A. Parke, D. Mehuys, K. Dzurko, R. J. Lang, R. Waarts, and D. Scifres, “Operating Characteristics of a High-Power Monolithically Integrated Flared Amplifier Master Oscillator Power Amplifier,” IEEE J. Quantum Electron. 29(6), 2052–2057 (1993). [CrossRef]
  14. A. Egan, C. Z. Ning, J. V. Moloney, R. A. Indik, M. W. Wright, D. J. Bossert, and J. G. McInerney, “Dynamic Instabilities in Master Oscillator Power Amplifier Semiconductor Lasers,” IEEE J. Quantum Electron. 34(1), 166–170 (1998). [CrossRef]
  15. C. J. Karlsson, F. Å. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000). [CrossRef]
  16. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45, 1567–1581 (1998). [CrossRef]
  17. U. P. Oppenheim and Y. Feiner, “Polarization of the reflectivity of paints and other rough surfaces in the infrared,” Appl. Opt. 34(10), 1664–1671 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (4514 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited