OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 5350–5355

Frequency converter implementing an optical analogue of the cosmological redshift

Vincent Ginis, Philippe Tassin, Ben Craps, and Irina Veretennicoff  »View Author Affiliations


Optics Express, Vol. 18, Issue 5, pp. 5350-5355 (2010)
http://dx.doi.org/10.1364/OE.18.005350


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

According to general relativity, the frequency of electromagnetic radiation is altered by the expansion of the universe. This effect—commonly referred to as the cosmological redshift—is of utmost importance for observations in cosmology. Here we show that this redshift can be reproduced on a much smaller scale using an optical analogue inside a dielectric metamaterial with time-dependent material parameters. To this aim, we apply the framework of transformation optics to the Robertson-Walker metric. We demonstrate theoretically how perfect redshifting or blueshifting of an electromagnetic wave can be achieved without the creation of sidebands with a device of finite length.

© 2010 Optical Society of America

OCIS Codes
(060.2630) Fiber optics and optical communications : Frequency modulation
(260.2110) Physical optics : Electromagnetic optics
(350.5720) Other areas of optics : Relativity
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

History
Original Manuscript: February 1, 2010
Manuscript Accepted: February 22, 2010
Published: February 26, 2010

Citation
Vincent Ginis, Philippe Tassin, Ben Craps, and Irina Veretennicoff, "Frequency converter implementing an optical analogue of the cosmological redshift," Opt. Express 18, 5350-5355 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5350


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008). [CrossRef] [PubMed]
  2. D. A. Genov, S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nature Phys. 5, 687-692 (2009). [CrossRef]
  3. E. E. Narimanov and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Appl. Phys. Lett. 95, 041106 (2009). [CrossRef]
  4. C. Qiang and C. T. Jun, "An electromagnetic black hole made of metamaterials," arXiv:0910.2159v1 [physics.optics] (2009).
  5. N. L. Balazs, "Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave," Phys. Rev. 110, 236-239 (1957). [CrossRef]
  6. J. Plebanski, "Electromagnetic waves in gravitational fields," Phys. Rev. 118, 1396-1408 (1960). [CrossRef]
  7. D. F. Felice, "On the gravitational field acting as an optical medium," Gen. Rel. Grav. 2, 347-357 (1971). [CrossRef]
  8. A. J. Ward and J. B. Pendry, "Refraction and geometry in Maxwell’s equations," J. Mod. Phys. 43, 773-793 (1996).
  9. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  10. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  11. U. Leonhardt and T. G. Philbin, "General relativity in electrical engineering," New J. Phys. 8, 247-264 (2006). [CrossRef]
  12. U. Leonhardt and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt. 53, 70-152 (2009).
  13. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photon. 1, 224-227 (2007). [CrossRef]
  14. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Mater. 8, 568-571 (2009). [CrossRef]
  15. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, "Scattering theory derivation of a 3D acoustic cloaking shell," Phys. Rev. Lett. 100, 024301 (2008). [CrossRef] [PubMed]
  16. M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, "Broadband cylindrical acoustic cloak for linear surface waves in a fluid," Phys. Rev. Lett. 101, 134501 (2008). [CrossRef] [PubMed]
  17. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett. 100, 123002 (2008). [CrossRef] [PubMed]
  18. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express 16, 11555-11567 (2008). [CrossRef] [PubMed]
  19. D. Kwon and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Opt. Express 16, 18731-18738 (2008). [CrossRef]
  20. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2008). [CrossRef]
  21. S. Carroll, Spacetime and Geometry (Addison Wesley, New York, 2003).
  22. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photon. Nanostruct.: Fundam. Applic. 6, 87-95 (2008). [CrossRef]
  23. N. V. Budko, "Electromagnetic radiation in a time-varying background medium," Phys. Rev. A 80, 053817 (2009). [CrossRef]
  24. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004). [CrossRef] [PubMed]
  25. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-index materials: New frontiers in optics," Adv. Mater. 18, 1941-1952 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited