OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5375–5383

Coupling effect between two adjacent chiral structure layers

Zhaofeng Li, Humeyra Caglayan, Evrim Colak, Jiangfeng Zhou, Costas M. Soukoulis, and Ekmel Ozbay  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5375-5383 (2010)
http://dx.doi.org/10.1364/OE.18.005375


View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A pair of mutually twisted metallic cross-wires can produce giant optical activity. When this single chiral layer is stacked layer by layer in order to build a thick chiral metamaterial, strong coupling effects are found between the two adjacent chiral layers. We studied these coupling effects numerically and experimentally. The results show that the existing coupling between chiral layers can make the chiral properties of a two-layered chiral metamaterial different from the constituting single chiral layers. It is explained qualitatively that the coupling effects are generated from the coupling of metallic cross-wires belonging to different chiral layers. Our experimental results are in good agreement with the simulation results.

© 2010 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(160.1585) Materials : Chiral media
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: January 4, 2010
Revised Manuscript: February 12, 2010
Manuscript Accepted: February 24, 2010
Published: March 1, 2010

Citation
Zhaofeng Li, Humeyra Caglayan, Evrim Colak, Jiangfeng Zhou, Costas M. Soukoulis, and Ekmel Ozbay, "Coupling effect between two adjacent chiral structure layers," Opt. Express 18, 5375-5383 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5375


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  2. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004). [CrossRef] [PubMed]
  3. I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83(16), 3263–3265 (2003). [CrossRef]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  6. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009). [CrossRef] [PubMed]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  8. Z. Li, K. B. Alici, H. Caglayan, and E. Ozbay, “Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture,” Phys. Rev. Lett. 102(14), 143901 (2009). [CrossRef] [PubMed]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  10. K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12(24), 5896–5901 (2004). [CrossRef] [PubMed]
  11. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73(19), 193103 (2006). [CrossRef]
  12. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005). [CrossRef] [PubMed]
  13. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007). [CrossRef]
  14. K. Aydin, Z. Li, L. Sahin, and E. Ozbay, “Negative phase advance in polarization independent, multi-layer negative-index metamaterials,” Opt. Express 16(12), 8835–8844 (2008). [CrossRef] [PubMed]
  15. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99(4), 043102 (2006). [CrossRef]
  16. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005). [CrossRef] [PubMed]
  17. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  18. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  19. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and Energy in Chiral Nihility,” J. Electromagn. Waves Appl. 17(5), 695–706 (2003). [CrossRef]
  20. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006). [CrossRef] [PubMed]
  21. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009). [CrossRef]
  22. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett. 94(15), 151112 (2009). [CrossRef]
  23. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009). [CrossRef] [PubMed]
  24. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009). [CrossRef]
  25. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009). [CrossRef]
  26. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009). [CrossRef] [PubMed]
  27. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials (Amst.) 1(2), 62–80 (2007). [CrossRef]
  28. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  29. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
  30. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, MA, 2008).
  31. D. H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design,” Opt. Express 16(16), 11822–11829 (2008). [CrossRef] [PubMed]
  32. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited