OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5384–5389

Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals

Teun-Teun Kim, Sun-Goo Lee, Hae Yong Park, Jae-Eun Kim, and Chul-Sik Kee  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5384-5389 (2010)
http://dx.doi.org/10.1364/OE.18.005384


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-dimensional photonic crystal asymmetric Mach-Zehnder filter (AMZF) based on the self-collimation effect is studied by numerical simulations and experimental measurements in microwave region. A self-collimated beam is effectively controlled by employing line-defect beam splitters and mirrors. The measured transmission spectra at the two output ports of the AMZF sinusoidally oscillate with the phase difference of π in the self-collimation frequency range. Position of the transmission peaks and dips can be controlled by varying the size of the defect rod of perfect mirrors, and therefore this AMZF can be used as a tunable power filter.

© 2010 OSA

OCIS Codes
(260.2030) Physical optics : Dispersion
(310.1210) Thin films : Antireflection coatings
(070.2615) Fourier optics and signal processing : Frequency filtering
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: January 26, 2010
Revised Manuscript: February 19, 2010
Manuscript Accepted: February 19, 2010
Published: March 1, 2010

Citation
Teun-Teun Kim, Sun-Goo Lee, Hae Yong Park, Jae-Eun Kim, and Chul-Sik Kee, "Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals," Opt. Express 18, 5384-5389 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5384


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, NJ, 1995).
  2. S. G. Johnson, P. Villeneuve, S. Fan, and J. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62(12), 8212–8222 (2000). [CrossRef]
  3. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90(23), 231114 (2007). [CrossRef]
  4. Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15(15), 9287–9292 (2007). [CrossRef] [PubMed]
  5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58(16), R10096–R10099 (1998). [CrossRef]
  6. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1246–1257 (2002). [CrossRef]
  7. S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29(6), 617–619 (2004). [CrossRef] [PubMed]
  8. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29(1), 50–52 (2004). [CrossRef] [PubMed]
  9. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12(9), 1823–1831 (2004). [CrossRef] [PubMed]
  10. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87(18), 181106 (2005). [CrossRef]
  11. M.-W. Kim, S.-G. Lee, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 90(11), 113121 (2007). [CrossRef]
  12. S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16(6), 4270–4277 (2008). [CrossRef] [PubMed]
  13. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251 (2003). [CrossRef]
  14. T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95(1), 011119 (2009). [CrossRef]
  15. A. W. Snyder and J. D. Love, “Goos-Hänchen shift,” Appl. Opt. 15(1), 236–238 (1976). [CrossRef] [PubMed]
  16. A. F. Matthews and Y. S. Kivshar, “Tunable Goos-Hänchen shift for the self-collimated beams in two-dimensional photonic crystals,” Phys. Lett. A 372, 3098–3101 (2008).
  17. A. F. Matthews and Y. S. Kivshar, “Experimental studies of the internal Goos-Hänchen shift for self-collimated beams in two-dimensional microwave photonic crystals,” Appl. Phys. Lett. 93(13), 131901 (2008). [CrossRef]
  18. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (2nd Ed. Artech House INC, Norwood, 2000).
  19. D. M. Pozar, Microwave Engineering, (John Wiley & Sons, New York, 1998), Chap. 3.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited