OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5407–5412

All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber

L. Sun, S. Jiang, and J. R. Marciante  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5407-5412 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-fiber optical magnetic field sensor is demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt.%-terbium–doped silicate fiber with a Verdet constant of –24.5 rad/(Tm) at 1053 nm. The fiber polarizer is Corning SP1060 single-polarization fiber. The sensor has a sensitivity of 0.49 rad/T and can measure magnetic fields from 0.02 to 3.2 T.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.2240) Optical devices : Faraday effect

ToC Category:

Original Manuscript: December 8, 2009
Revised Manuscript: January 29, 2010
Manuscript Accepted: January 29, 2010
Published: March 1, 2010

L. Sun, S. Jiang, and J. R. Marciante, "All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber," Opt. Express 18, 5407-5412 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Lenz, “A review of magnetic sensors,” Proc. IEEE 78(6), 973–989 (1990). [CrossRef]
  2. A. Yariv and H. V. Winsor, “Proposal for detection of magnetic fields through magnetostrictive perturbation of optical fibers,” Opt. Lett. 5(3), 87–89 (1980). [CrossRef] [PubMed]
  3. H. Okamura, “Fiber-optic magnetic sensor utilizing the Lorentzian force,” J. Lightwave Technol. 8(10), 1558–1564 (1990). [CrossRef]
  4. V. Radojevic, D. Nedeljkovic, N. Talijan, D. Trifunovic, and R. Aleksic, “Optical fibers with composite magnetic coating for magnetic field sensing,” J. Magn. Magn. Mater. 272−276, E1755−E1756 (2004). [CrossRef]
  5. C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. Magn. 42(10), 3285–3287 (2006). [CrossRef]
  6. G. W. Day, D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors,” Opt. Lett. 7(5), 238–240 (1982). [CrossRef] [PubMed]
  7. V. Annovazzi-Lodi, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995). [CrossRef]
  8. W. E. Gettys, F. J. Keller, and M. J. Skove, Physics, Classical and Modern (McGraw-Hill, New York, 1989).
  9. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “Effective Verdet constant in a terbium-doped-core phosphate fiber,” Opt. Lett. 34(11), 1699–1701 (2009). [CrossRef] [PubMed]
  10. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett. (to be published in Opt. Lett. Vol. 35(5), (2010)).
  11. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995). [CrossRef] [PubMed]
  12. D. A. Nolan, G. E. Berkey, M.-J. Li, X. Chen, W. A. Wood, and L. A. Zenteno, “Single-polarization fiber with a high extinction ratio,” Opt. Lett. 29(16), 1855–1857 (2004). [CrossRef] [PubMed]
  13. M. McCaig, and A. G. Clegg, Permanent Magnets in Theory and Practice, 2nd ed. (Wiley, New York, 1987).
  14. J. R. Marciante, N. O. Farmiga, J. P. Kondis, and J. R. Frederick, “Phase effects of secondary reflections on the performance of reflective liquid-crystal cells,” Opt. Express 11(9), 1096–1105 (2003). [CrossRef] [PubMed]
  15. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several,” Appl. Opt. 30(10), 1176–1178 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited