OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5433–5448

Open-loop control demonstration of Micro-Electro-Mechanical-System MEMS Deformable Mirror

Célia Blain, Rodolphe Conan, Colin Bradley, and Olivier Guyon  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5433-5448 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



New astronomical challenges revolve around the observation of faint galaxies, nearby star-forming regions and the direct imaging of exoplanets. The technologies required to progress in these fields of research rely on the development of custom Adaptive Optics (AO) instruments such as Multi-Object AO (MOAO) or Extreme AO (ExAO). Many obstacles remain in the development of these new technologies. A major barrier to the implementation of MOAO is the utilisation of deformable mirrors (DMs) in an open-loop control system. Micro-Electro-Mechanical-System (MEMS) DMs show promise for application in both MOAO and ExAO. Despite recent encouraging laboratory results, it remains an immature technology which has yet to be demonstrated on a fully operational on-sky AO system. Much of the research in this area focuses on the development of an accurate model of the MEMS DMs. In this paper, a thorough characterization process of a MEMS DM is performed, with the goal of developing an open-loop control strategy free of computationally heavy modelling (such as the use of plate equations). Instead, a simpler approach, based on the additivity of the influence functions, is chosen. The actuator stroke-voltage relationship and the actuator influence functions are carefully calibrated. For 100 initial phase screens with a mean rms of 97 nm (computer generated following a Von Karman statistic), the resulting mean residual open-loop rms error is 16.5 nm, the mean fitting error rms is 13.3 nm and the mean DM error rms is 10.8 nm (error reflecting the performances of the model under test in this paper). This corresponds to 11% of residual DM error.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(230.4040) Optical devices : Mirrors

ToC Category:
Adaptive Optics

Original Manuscript: November 16, 2009
Revised Manuscript: January 30, 2010
Manuscript Accepted: February 5, 2010
Published: March 2, 2010

Cèlia Blain, Rodolphe Conan, Colin Bradley, and Olivier Guyon, "Open-loop control demonstration of micro-electro-mechanical-system MEMS deformable mirror," Opt. Express 18, 5433-5448 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Perreault, T. Bifano, B. M. Levine, and M. Harenstein, "Adaptive optic correction using microelectromechnical deformable mirrors," Opt. Eng. 41(3), 561-566 (2002). [CrossRef]
  2. M. N. Horenstein, T. Bifano, R. Krishnamoorthy, and N. Vandelli, "Electrostatic effects in micromachined actuators for adaptive optics," J. Electrostatics 42, 69-81 (1997). [CrossRef]
  3. B. P. Wallace, P. Hampton, C. Bradley, and R. Conan, "Evaluation of a MEMS deformable mirror for an adaptive optics test bench," Opt. Express 14(22), 10132 (2006). [CrossRef] [PubMed]
  4. K. M. Morzinski, D. T. Gavel, A. P. Norton, D. R. Dillon, and M. R. Reinig, "Characterizing MEMS deformable mirrors for open-loop operation: High-resolution measurements of thin-plate behavior," Proc. SPIE MEMS Adaptive Optics II 6888, 68880S (2008).
  5. T. G. Bifano, R. K. Mali, J. K. Dorton, J. Perreault, N. Vandelli, M. N. Horenstein, and D. A. Castanon, "Continuous-membrane surface-micromachined silicon deformable mirror," Opt. Eng. 36(5), 1354-1360 (1997). [CrossRef]
  6. K. M. Morzinski, J. W. Evans, S. Severson, B. Macintosh, D. Dillon, D. Gavel, C. Max, and D. Palmer, "Characterizing the potential of MEMS deformable mirrors for astronomical adaptive optics," Proc. SPIE Advances in Adaptive Optics II 6272, 627221 (2006).
  7. C. Blain, R. Conan, O. Guyon, C. Bradley, and C. Vogel, "Characterization of influence function non-additivities for a 1024-actuator MEMS DM," in press (2009).
  8. S. A. Cornelissen, P. A. Bierden, and T. G. Bifano, "Development of a 4096 element MEMS continuous membrane deformable mirror for high contrast astronomical imaging," Proc. SPIE Advanced wavefront control: methods, devices and applications IV 6306, 630606 (2006).
  9. B. Macintosh, J. Graham, D. Palmer, R. Doyon, D. Gavel, J. Larkin,  et al., "The Gemini Planet Imager," Proc. SPIE Advances in Adaptive Optics II 6272, 62720L (2006).
  10. F. Assemat, E. Gendron, and F. Hammer, "The FALCON concept: Multi-Object adaptive optics and atmospheric tomography for integral field spectroscopy-principle and performance on a 8-m telescope," MNRAS 376, 287-312 (2007). [CrossRef]
  11. O. Guyon, E. Pluzhnik, F. Martinache, J. Totems, S. Tanaka, T. Matsuo, C. Blain, and R. Belikov "High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation," in press (2009).
  12. T. Fusco, G. Rousset, J.-F. Sauvage, C. Petit, J.-L. Beuzit, K. Dohlen, D. Mouillet, J. Charton, M. Nicolle, M. Kasper, P. Baudoz, and P. Puget, "High-order adaptive optics requirement for direct detection of extrasolar planets: Application to the SPHERE Instrument," Opt. Express 14(17), 7515-7534 (2006). [CrossRef] [PubMed]
  13. J. W. Evans, K. Morzinski, S. Severson, L. Poyneer, B. Macintosh, D. Dillon, L. Reza, D. Gavel, D. Palmer, S. Olivier, and P. Bierden, "Extreme Adaptive Optics testbed: performance and characterization of a 1024 deformable mirror," Proc. SPIE MEMS/MOEMS Components and their applications III 6113, 131-136 (2006).
  14. L. A. Poyneer and D. Dillon, "MEMS adaptive optics for the Gemini Planet Imager: control methods and validation," Proc. SPIE Advances in Adaptive Optics II 6888, 68880H (2008).
  15. E. A. Pluzhnik, O. Guyon, S. Ridgway, R. Woodruff, C. Blain, F. Martinache, and R. Galicher, "The Phase Induced Aplitude Apodization Coronagraph: an overview of simulations and laboratory effort," IAU, Direct Imaging of Exoplanets: Science and Techniques 200, (2005).
  16. F. Martinache, O. Guyon, J. Lozi, V. Garrel, C. Blain, and G. Sivo, "The Subaru Coronagraphic Extreme AO Project," in press (2009).
  17. D. Gavel, S. Severson, B. Bauman, D. Dillon, M. Reinig, C. Lockwood, D. Palmer, K. Morzinski, M. Ammons, E. Gates, and B. Grigsby,"Villages: An on-sky visible wavelength astronomy AO experiment using MEMS deformable mirror," Proc. SPIE Photonics West 3888-03, (2008).
  18. C. Blain, O. Guyon, R. Conan, and C. Bradley, "Simple iterative method for open-loop control of MEMS deformable mirrors," Proc. SPIE Adaptive Optics Systems 7015, 701534 (2008).
  19. K. Morzinski, K. B. Harpsoe, D. Gavel, and S. M. Ammons,"The open-loop control of MEMS: Modeling and experimental results," Proc. SPIE MEMS Adaptive Optics 6467, 64670G (2007).
  20. J. B. Stewart, A. Diouf, Y. Zhou, and T. Bifano, "Open-Loop control of MEMS deformable mirror for largeamplitude wavefront control," J. Opt. Soc. Am. 24(12), 3827-3833 (2007). [CrossRef]
  21. C. R. Vogel and Q. Yang, "Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror," J. Opt. Soc. Am. A 23(5), 1074-1081 (2006). [CrossRef]
  22. M. C. Roggemann and B. Welsh, "Imaging through turbulence."
  23. J. Nelson and G. H. Sanders, "The status of the Thirty Meter Telescope project," Proc. SPIE Ground-based and Airborne Telescopes II 7012, 70121A (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited