OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5481–5495

2D back-side diffraction grating for improved light trapping in thin silicon solar cells

Jo Gjessing, Erik Stensrud Marstein, and Aasmund Sudbø  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5481-5495 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light-trapping techniques can be used to improve the efficiency of thin silicon solar cells. We report on numerical investigation of a light trapping design consisting of a 2D back-side diffraction grating in combination with an aluminum mirror and a spacing layer of low permittivity to minimize parasitic absorption in the aluminum. The light-trapping design was compared to a planar reference design with antireflection coating and back-side aluminum mirror. Both normally and obliquely incident light was investigated. For normal incidence, the light trapping structure increases the short circuit current density with 17% from 30.4 mA/cm2 to 35.5 mA/cm2 for a 20 µm thick silicon solar cell. Our design also increases the current density in thinner cells, and yields higher current density than two recently published designs for cell thickness of 2 and 5 µm, respectively. The increase in current may be attributed to two factors; increased path length due to in-coupling of light, and decreased parasitic absorption in the aluminum due to the spacing layer.

© 2010 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

Original Manuscript: November 6, 2009
Revised Manuscript: February 24, 2010
Manuscript Accepted: February 24, 2010
Published: March 3, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Jo Gjessing, Erik Stensrud Marstein, and Aasmund Sudbø, "2D back-side diffraction grating for improved light trapping in thin silicon solar cells," Opt. Express 18, 5481-5495 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Henley, A. Lamm, S. Kang, and L. Tian, “Direct film transfer (DFT) technology for kerf-free silicon wafering,” Proc. 23rd PVSEC, Valencia Spain, 1090–1093 (2008).
  2. J. Nelson, The Physics of Solar Cells, (Imperial College Press, London, 2003).
  3. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]
  4. J. M. Gee, “Optically enhanced absorption in thin silicon layers using photonic crystals,” Twenty-Ninth IEEE Photovolt. Spec. Conf., 150–153 (2002).
  5. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983). [CrossRef]
  6. C. Heine and R. H. Morf, “Submicrometeer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  7. M. T. Gale, B. Curtis, H. Kiess, and R. H. Morf, “Design and fabrication of submicron structures for light trapping in silicon solar cells,” Proc. SPIE 1272, 60–66 (1990). [CrossRef]
  8. H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 1087–1090 (2009). [CrossRef]
  9. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008). [CrossRef]
  10. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007). [CrossRef]
  11. R. Dewan and D. Knipp, “Light-trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009). [CrossRef]
  12. A. Čampa, J. Krč, F. Smole, and M. Topič, “Potential of diffraction gratings for implementation as a metal back reflector in thin-film silicon solar cells,” Thin Solid Films 516(20), 6963–6967 (2008). [CrossRef]
  13. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006). [CrossRef]
  14. N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, “Design of Highly Efficient Light-Trapping Structures of Thin-Film Crystalline Silicon Solar Cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007). [CrossRef]
  15. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  16. D. Zhou and R. Biswas, “Harvesting photons in thin film solar cells with photonic crystals,” Mater. Res. Soc. Symp. Proc. 1101, (2008).
  17. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008). [CrossRef] [PubMed]
  18. C. Haase and H. Stiebig, “Optical Properties of Thin-film Silicon Solar Cells with Grating Couplers,” Prog. Photovoltaics 14(7), 629–641 (2006). [CrossRef]
  19. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007). [CrossRef]
  20. F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micromorph tandem solar cells on flexible low-cost plastic substrates,” Sol. Energy Mater. Sol. Cells 93(6-7), 884–887 (2009). [CrossRef]
  21. J. Gjessing, E. S. Marstein, and A. Sudbø, “Modelling of light trapping in thin silicon solar cells with back side dielectric diffraction grating,” Proc. 24th PVSEC, Hamburg Germany, 2604–2607 (2009).
  22. http://software.kjinnovation.com/GD-Calc.html
  23. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996). [CrossRef]
  24. http://ab-initio.mit.edu/meep/
  25. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House Publishers, Norwood MA, 2005).
  26. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, New Jersey 2008).
  27. C. M. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998). [CrossRef]
  28. E. D. Palik ed., Handbook of Optical Constants of Solids, (Academic Press, San Diego, 1985).
  29. http://rredc.nrel.gov/solar/spectra/am1.5/
  30. M. A. Green, Silicon Solar Cells – Advanced principles and practice, (Centre for Photovoltaic Devices and Systems, Sydney, 1995).
  31. H. A. Macleod, Thin-Film Optical Filters, (Institute of Physics Publishing, Bristol, 2001).
  32. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494–4500 (1980). [CrossRef]
  33. E. Schneiderlöchner, R. Preu, R. Lüdemann, and S. W. Glunz, “Laser-Fired Rear Contacts for Crystalline Silicon Solar Cells,” Prog. Photovoltacis 10, 29–34 (2002). [CrossRef]
  34. http://www.mathworks.com/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited